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In lieu of Birthday Greetings

B. J. Birch Jean-Louis Colliot-Thélene
G. K. Sankaran Miles Reid Alexei Skorobogatov

This is a volume of papers in honour of Peter Swinnerton-Dyer’s 75th
birthday; we very much regret that it appears a few months late owing to
the usual kind of publication delays. This preface contains four sections of
reminiscences, attempting the impossible task of outlining Peter’s many-sided
contributions to human culture. Section 5 is the editor’s summary of the 12
papers making up the book, and the preface ends with a bibliographical
section of Peter’s papers to date.

1 Peter’s first sixty years in Mathematics
by Bryan Birch

Peter Swinnerton-Dyer wrote his first paper [1] as a young schoolboy just
60 years ago, under the abbreviated name P. S. Dyer; in it, he gave a new
parametric solution for z* +y* = z* + t*. It is very appropriate that his first
paper was on the arithmetic of surfaces, the theme that recurs most often in
his mathematical work; indeed, for several years he was almost the only person
writing substantial papers on the subject; and he is still writing papers about
the arithmetic of surfaces sixty years later. Peter went straight from school
to Trinity College (National Service had not quite been introduced); after
his BA, he began research as an analyst, advised by J E Littlewood. At the
time, Littlewood’s lectures were fairly abstract, heading towards functional
analysis; in contrast, Peter was advised to work on the very combinatorial,
down-to-earth, theory of the van der Pol equation (the subject of Littlewood’s
wartime collaboration with Mary Cartwright), where a surprising sequence
of stable periodic orbits arise completely unexpectedly from a simple-looking
but non-linear ordinary differential equation. Lurking in the background was
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the three body problem, together with ambitions to prove the stability of the
solar system, compare [20].

After a couple of years, Peter was elected to a Trinity Junior Research
Fellowship, and became a full member of the mathematical community (he
never needed to submit a doctoral thesis). In 1954, he was selected for a
Commonwealth Fund Fellowship, and went to Chicago intending to work with
Zygmund; but when he reached Chicago, he met Weil, who converted him
to geometry; I believe that Weil was the person who most influenced Peter’s
mathematics. Ever since his year in Chicago, Peter has been an arithmetic
geometer, with unexpected expertise in classical analysis.

Peter returned to Cambridge in 1955. In the 1950s, mathematical life in
Cambridge was vigorous and sociable; everyone collaborated with everyone
else. It was the heyday of the Geometry of Numbers (it was sad that so much
excellent mathematical work was poured into such an unworthy subject!)
and Peter joined in. In particular, he and Eric Barnes (later Professor at
Adelaide) wrote a massive series of papers [5] on the inhomogeneous minima
of binary quadratic forms, which completely settled the problem of which
real quadratic fields are norm-Euclidean; like the van der Pol equation, this
is a case where a ‘discrete’ phenomenon arises from a ‘continuous’ question.
He went on to collaborate with Ian Cassels [8], trying to obtain a similar
theory for products of three linear forms; their work was highly interesting,
but only partially successful, and to this day there has been (I believe) no
further progress on the problem.

I first came into contact with Peter in 1953, when he read my Rouse Ball
essay on the Theory of Games (one of Peter’s lesser interests, that does not
show up in his list of publications), and I got to know him well after he re-
turned from Chicago. Over the next couple of years, we talked a lot and he
taught me to enjoy opera and we wrote two or three pretty but unimpor-
tant papers together; but at that stage, he wanted to be a geometer, and I
was turning towards analytic number theory, under the influence of Harold
Davenport. In my turn, I went to the States with a Commonwealth Fund
Fellowship, and while I was away Peter took a post in the fledgling Computer
laboratory. When I returned, I was excited by the Tamagawa numbers of
linear algebraic groups, one of us (probably Peter) wondered about algebraic
groups that aren’t affine, and we set to, computing elliptic curves.

Those four years, from 195862, were probably the best of my life; they
were the most productive, and I married Gina (who had a desk in Peter’s office
in the Computer laboratory). We were under no pressure to publish: we both
had Fellowships, and knew we could get another job whenever we needed one;
and we didn’t have to worry about anyone else anticipating our work. In the
first phase, we made a frontal assault; for the curves E(a,b) : y*> = 23 +ax+0b
with |a| < 20 and |b] < 30 we computed the Mordell-Weil rank, the 2-part of
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the Tate-Shafarevich group, and a substitute T'(E, P) for a Tamagawa num-
ber 7(E), namely the product of p-adic densities taken over primes p < P
where P was as high as the market would stand. Peter did the programming,
which he made feasible by dealing with many curves simultaneously; for good
primes the p-adic density was of course N,/p where N, was the number of
points mod p, and the crude methods of computing N, for medium-sized p
were nearly as fast for a batch of curves as for a single curve; there was an even
better batch-processing gain in the rank computations. (For the finitely many
‘bad’ primes one needed so-called fudge factors, which I seem to remember
were part of my job). To our delight, the numbers T'(E, P) increased roughly
as ¢(E)log" P, where r was the Mordell-Weil rank of F; so we prepared [17]
for publication, and proceeded to the second phase. Here, Davenport and
Cassels were very helpful; urged by their prodding, we realised that, rather
than considering the product T'(E, P) as P got large, one should be consider-
ing L(E,s)™! as s tends to 1 (so that L(E, s) should have a zero of order r at
s =1). (As Weil remarked to a colleague in Chicago, ‘it was time for them to
learn some mathematics’.) Hecke had tamed this Dirichlet series for elliptic
curves with complex multiplication, giving an explicit formula that actually
converged at s = 1. So we approximated to the Dirichlet series L(FE,1),
in case F had complex multiplication and Mordell-Weil rank 1; and we got
numbers that really seemed to mean something: after the junk factors had
been scraped off, they seemed to be the order of the Tate-Shafarevich group
divided by the torsion squared. Next, Davenport showed us how to evaluate
L(E,1) explicitly in terms of the Weierstrass p-function; we computed some
more, and [18], containing the main B-S-D conjectures, was the result.

In 1962 I left Cambridge to take a job in Manchester, and our collaboration
became less close; we had expected to write further Notes in the series ‘On
Elliptic Curves’, but they didn’t happen. Note III might have been a plan of
Peter’s, to test the conjecture for abelian varieties by starting with products
of elliptic curves; this turned into the thesis of Damerell, which essentially
computed critical values of L(E® s), where E® is the cube of a curve;
the numbers were interesting but he was not able to interpret them. The
intended Note IV was more important; Nelson Stephens was able to compute
the higher derivatives L") (E,1), where r is the Mordell-Weil rank; he was
the first to obtain exact evidence for the conjectured formula, for elliptic
curves of higher rank over the rationals, and indeed his thesis [93] is where
it is first precisely stated. In July 1965, Peter received a letter from Weil
[94] which set the tone for further progress in the area. Weil reminded us
that our conjectures make sense only if the relevant functions L(FE,s) have
functional equations, and this is likely to be true only if the elliptic curve
E/Q is parametrised by modular functions invariant by some (V). So we
had better be looking at modular curves! I was in Cambridge on sabbatical
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for the next term, so we set to work. Indeed, we worked very hard; on one
occasion we were so engrossed talking mathematics after dinner, on Trinity
Backs, that an unobservant porter locked us out; fortunately, we were able to
regain entry by successfully charging the New Court gate.

Weil’s letter led to three developments; first, modular symbols: I am
pretty certain that Peter had the first idea [89], but he was very busy, so
I and my students had to make them work, and Manin [91] formalised the
concept. Next, the tabulation of elliptic curves of small conductor (Table I
of [43]); this involved many people, starting with Peter and then me, as
described in the introduction to the table. Finally, a few years later, Heegner
points came on the scene.

I was most excited in our work on elliptic curves; but indeed Peter’s in-
terests in this period were exceedingly diverse. He did seminal work on his
earliest love, the arithmetic of surfaces: in [15] he found the first counterex-
ample to the Hasse principle for cubic surfaces (I think he found this example
in 1959, as I reported on it in Boulder). A little later, he improved a result of
Mordell, that the Hasse principle is valid for the intersection of two quadric
hypersurfaces in P™ so long as the dimension n is large enough — this paper
[19] is of interest as a very early example of Peter’s technique of working out
what one can prove if one assumes various useful but unprovable ‘facts’; with
luck, one may remove such unwanted hypotheses later. His 1969 paper [34]
at the Stony Brook conference reviewed what was known, and contained new
material. At last, in 1970, Peter ceased to be a lone voice crying in the wilder-
ness, when Manin introduced the so-called Manin obstruction in his lecture
at Nice [90], and went on to write his book on cubic surfaces [92]. Also in
1969-70, Colliot-Thélene went to Cambridge to work with Peter; since then
the theory has flourished, as this volume amply testifies.

Meanwhile, Peter remained an analyst; in particular, Noel Lloyd was his
research student between 1969 and 1972. He also became interested in mod-
ular forms for their own sake; with Atkin, he investigated modular forms on
non-congruence subgroups [32]. Surprisingly, their results suggested that the
power series of such modular forms should have good p-adic properties (their
conjecture was proved long afterwards by Scholl). Peter corresponded with
Serre, and published the basic paper on the structure of (ordinary) modular
forms modulo p in the third volume of the Antwerp Proceedings [43]; this
volume was of course the beginning of the theory of p-adic modular forms.
Peter made yet another important contribution in the Computing Laboratory,
where he was responsible for implementing Autocode for Titan.

He worried about the inefficiencies of university governance, and took an
increasing interest in administrative matters. In 1973 he was elected Master
of St Catherine’s College, from 1979-81 he was Vice Chancellor, and from
1983-89 he was Chairman of the University Grants Committee. All this
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involved an immense amount of committee work, but miraculously (and with
the help of Harriet, and of Jean-Louis Colliot-Théléne) he remained in touch
with mathematics. When he returned to Cambridge in 1989 he resumed full-
time research, principally on the arithmetic theory of surfaces, but also on
analysis.

Oxford, 10th Dec 2002

2 Peter Swinnerton-Dyer’s work on the
arithmetic of higher dimensional varieties
by Jean-Louis Colliot-Thélene

In parallel to his well-known contributions to elliptic curves, modular forms,
L-functions, differential equations, bridge, chess and other respectable topics,
Peter has a lifelong interest in the arithmetic geometry of some — at first
sight — rather special varieties: cubic surfaces and hypersurfaces, complete
intersections of two quadrics defining a variety of dimension > 2, and quartic
surfaces.

I happened to spend a year in Cambridge when I started research, and
Peter passed on to me his keen interest in the corresponding diophantine
questions. I am thus happy to report here on Peter’s past and ongoing work
on these problems. As will be clear from what follows, Peter, at age 75, is
still doing entirely original innovative research.

Much of the progress achieved in arithmetic geometry during the twenti-
eth century has been concerned with curves. For these, we now have a clear
picture: for genus zero, the Hasse principle holds; for genus one, many prob-
lems remain, but we have the Birch and Swinnerton-Dyer conjecture, and
we hope that the Tate-Shafarevich groups are finite; for genus at least two,
Faltings proved the Mordell conjecture.

In higher dimension the situation is much less clear. For the three types
of varieties mentioned above, one is still grappling with the basic diophantine
questions: How can we decide whether there are rational points on such a
variety? Is there a local-to-global principle, or at least some substitute for
such a principle? What are the density properties of rational points on such
varieties (in the sense of the Chinese remainder theorem)? Can one “parame-
trize” the rational points? Can one estimate the number of rational points of
bounded height?

The time when varieties were classified according to their degree, as in
Mordell’s book, is long gone, and one may view the varieties just mentioned
as belonging to some general classes of varieties. One general class of interest
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is that of rational varieties (varieties birational to projective space after a
finite extension of the ground field). A wider class, whose interest has been
recognized only in the last ten years, is that of rationally connected varieties.
These are now considered as the natural higher dimensional analogues of
curves of genus zero. Nonsingular intersections of two quadrics (of dimension
> 2) are rational varieties, hence rationally connected; so are nonsingular
cubic surfaces. Higher dimensional cubic hypersurfaces are rationally con-
nected. Nonsingular quartic surfaces are not rationally connected, but there
are interesting density questions for rational points on them.

Until 1965, there were two kinds of general results on the arithmetic of
rational varieties. One series of works, going back to the papers of H. Hasse
in the twenties (local-to-global principle for the existence of rational points
on quadrics), was concerned with homogeneous spaces of connected linear
algebraic groups. A very different series of works, going back to the work
of G. H. Hardy and J. E. Littlewood, proved very precise estimates on the
number of points of bounded height (hence in particular proved existence of
rational points) on complete intersections when the number of variables is
considerably larger than the multidegree.

There had also been isolated papers by F. Enriques, Th. A. Skolem, B.
Segre, L. J. Mordell, E. S. Selmer, F. Chatelet, J. W. S. Cassels and M. J.
T. Guy. Peter himself made various contributions to the topic in his early
work: he produced the first counterexamples to the Hasse principle and to
weak approximation for cubic surfaces [15], he extended results of Mordell on
the existence of rational points on complete intersections of two quadrics in
higher dimensional projective space [19], and he proved the Hasse principle
for cubic surfaces with special rationality properties of the lines.

Over the years 1965-1970, after some prodding by I. R. Shafarevich, Yu.
[. Manin and V. A. Iskovskikh looked at this field of research in the light
of Grothendieck’s algebraic geometry. They did not solve all the diophan-
tine problems, but they put some order on them. A typical illustration
was Manin’s appeal [90] to Grothendieck’s Brauer group to reinterpret most
known counterexamples to the Hasse principle, including Peter’s.

I spent the academic year 1969/1970 in Cambridge — I was hoping to
learn more about concrete diophantine problems, not the kind of arithmetic
geometry I was exposed to in France. Professor Cassels advised me to take
Peter as a research supervisor. I was first taken aback, because, ignorant as
I was, the only thing I knew about Peter was that he had written a paper
entitled “An application of computing to number theory”, and I was not
too keen on computing. I wanted concrete diophantine equations, but with
abstract theory. I nevertheless asked Peter, and this was certainly one of the
most important moves in my mathematical career.

In those days, Peter was neither a Sir nor a Professor. He was known
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to Trinity students as “The Dean”, whose function I understand was to pre-
serve moral order among the students. To this he contributed by serving
sherry (“Sweet, medium or dry?”) each evening in his small flat in New
Court. Sherry time was the ideal time to ask him for advice, mathemati-
cal or other — I do not remember Peter as a great addict of long sessions in
the Mathematics Department. Well, at least one could enjoy his beautifully
prepared lectures (the young Frenchman enjoyed the very clear, classical En-
glish as much as the mathematics). Peter was well known for his wit, and
Swinnerton-Dyer quotations and stories abounded. His students enjoyed his
avuncular behaviour — he was not a thesis adviser in the classical sense — and
at the same time one vaguely feared him as the possible mastermind of many
things going on in Cambridge. (His masterminding was later to extend to a
wider scene — I remember Spencer Bloch being rather impressed by a 1982
newspaper representation of Peter Swinnerton-Dyer portrayed as King Kong
climbing up one of London University’s main buildings.)

One day in April 1970, on Burrell’s walk, I asked Peter for a research
topic. He mentioned the question of understanding and generalizing some
work of Francois Chatelet, who had performed for cubic surfaces of the shape
y? — az? = f(z) (with f(z) a polynomial of the third degree) something
which looked like descent for elliptic curves — Peter also had handwritten lists

of questions on a similar process for diagonal cubic surfaces.

In July 1970 I went back to France, and learned “French algebraic geom-
etry” with J.-J. Sansuc. He and I discussed étale cohomology and Grothen-
dieck’s papers on the Brauer group, but I kept on thinking about Chatelet
surfaces and Peter’s questions. In 1976-77, Sansuc and I laid out the gen-
eral mechanism of descent, which appeals to principal homogeneous spaces
(so-called torsors) with structure group a torus (as opposed to the finite com-
mutative group schemes used in the study of curves of genus one). One aim
was to find the right descent varieties on Chatelet surfaces (and to answer a
question of Peter, whether descent here was a one-shot process, as opposed
to what happens for elliptic curves). The theory was first applied to more
amenable varieties, namely to smooth compactification of tori. As far as
Chatelet surfaces are concerned, there were two advances: In 1978, Sansuc
and I realized that Schinzel’s hypothesis (a wild generalization of the twin
prime conjectures) — also considered much earlier by Bouniakowsky, Dick-
son, and Hardy and Littlewood — would imply statements of the type: the
Brauer-Manin obstruction is the only obstruction to the Hasse principle for
generalized Chatelet surfaces, namely for surfaces of the shape y*—az? = f(z)
with f(x) a polynomial of arbitrary degree (over the rationals). The second
advance took place in 1979: following a rather devious route, D. Coray, J.-
J. Sansuc and I found a class of generalized Chatelet surfaces for which the
Brauer—Manin obstruction entirely accounts for the defect of the Hasse prin-
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ciple.

During the period 1970-1982, Peter was busy with any number of different
projects: the Antwerp tables on elliptic curves [45], understanding Ramanu-
jan congruences for coefficients of modular forms [43], [51], writing, jointly
with B. Mazur, an influential paper [37] on the arithmetic of Weil curves and
on p-adic L-functions, proving (jointly with M. Artin [46]) the Tate conjec-
ture for K3 surfaces with a pencil of curves of genus one (a function-theoretic
analogue of the finiteness of the Tate-Shafarevich group), and also writing
a number of papers on differential equations. He also wrote a note on the
number of lattice points on a convex curve [33], which was followed by papers
of other writers (W. M. Schmidt, E. Bombieri and J. Pila). The ideas in those
papers now play a role in the search for unconditional upper bounds for the
number of rational points of bounded height (work of D. R. Heath-Brown).

During that period, Peter also contributed papers on rational varieties:
he gave a proof of Enriques’ claim that del Pezzo surfaces of degree 5 always
have a rational point [42], he wrote a paper with B. Birch producing further
counterexamples to the Hasse principle [47] and he wrote a paper on R-
equivalence on cubic surfaces over finite fields and local fields [56]. This last
paper used techniques specific to cubic surfaces to prove results which have
just been generalized to all rationally connected varieties by J. Kollar and E.
Szabd, who use modern deformation techniques. That paper and a later one
[87] on a related topic exemplify how Peter is not deterred by inspection of a
very high number of special cases.

Indeed it is Peter’s general attitude that a combination of cleverness and
brute force is just as powerful as modern cohomological machineries. As the
development of many of his ideas has shown, cohomology often follows, and
sometimes helps. As we say in France, “I'intendance suit”.

Let me here include a parenthesis on Peter’s ideal working set-up. Sitting
at a conference and not listening to a lecture on a rather abstruse topic seems
to be an ideal situation for him to conceive and write mathematical papers.
The outcome, written without a slip of the pen, is then imposed upon the
lesser mortal who will definitely take much more time to digest the contents
than it took Peter to write them.

In 1982, I spent another six months in Cambridge. I did not see Peter
too often, as I was rather actively working on algebraic K-theory, not a field
which attracts his attention. However, shortly before I left Cambridge, in
June 1982, Peter invited me for lunch at high table in Trinity, and while
reminding me how to behave in this respectable environment, he inadvertently
mentioned that he could say something new on descent varieties attached to
Chatelet surfaces — the topic he had offered to me as a research topic 12 years
earlier. If my memory is correct, what he did was to sketch how to prove
the Hasse principle on the specific intersections of two quadrics appearing in
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the descent process on Chatelet surfaces, the method being a reduction by
clever hyperplane sections to some very special intersections of two quadrics
in 4-dimensional projective space. Sansuc and I quickly saw how the descent
mechanism we had developed in 1976-77 could combine with this new result.
This was to develop into a Comptes Rendus note of Sansuc, Swinnerton-Dyer
and myself [57] in 1984, then into a 170 page paper of the three of us in Crelle
three years later [61]. Among other results, we obtained a characterisation
of rational numbers that are sums of two squares and a fourth power, and
we proved that over a totally imaginary number field two quadratic forms
in at least 9 variables have a nontrivial common zero (this is the analogue
of Meyer’s result for one form in 5 variables). An outcome of the algebraic
geometry in our work was a negative answer (joint work of the three of us
with A. Beauville [59]) to a 1949 problem of Zariski: some varieties are stably
rational but not rational.

Around 1992, the idea to use Schinzel’s hypothesis to explore the valid-
ity of the Hasse principle (or of its Brauer-Manin substitute) was revived
independently by J-P. Serre and by Peter [67]. In that paper, conceived dur-
ing a lengthy coach trip in Anatolia, Peter simultaneously started developing
something he calls the Legendre obstruction. In many cases, this obstruc-
tion can be shown to be equivalent to the Brauer-Manin obstruction, but
Peter tells me there are cases where this yields information not reachable by
means of the Brauer-Manin obstruction. In 1988, P. Salberger had obtained
a remarkable result on zero-cycles on conic bundles over the projective line.
The paper involved a mixture of algebraic K-theory and approximation of
polynomials. Peter saw how to get rid of the K-theory and how to isolate
the essence of Salberger’s trick, which turned out to be an unconditional ana-
logue of Schinzel’s hypothesis. This was developed in papers of Peter, in a
paper with me [66] and in a paper with A. N. Skorobogatov and me [73]. The
motto here is: it is worth exploring results conditional on Schinzel’s hypothe-
sis for rational points, because if one succeeds, then one may hope to replace
Schinzel’s hypothesis by Salberger’s trick and prove unconditional results for
zero-cycles.

Up until about ten years ago, work in this area was concerned with the
total space of one-parameter families of varieties which were close to being
rational. In 1993 Peter invented a very intricate new method, which en-
ables one to attack pencils of curves of genus one. In its general form, the
method builds upon two well-known but very hard conjectures, already men-
tioned: Schinzel’s hypothesis and finiteness of Tate-Shafarevich groups of
elliptic curves. The original paper [69], in Peter’s own words, looks like a
series of lucky coincidences and “rather uninspiring” explicit computations
(not many of us have the good fortune to come across such series). It already
had striking applications to surfaces which are complete intersections of two
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quadrics.

It took several years for Skorobogatov and me to get rid of as many lucky
coincidences as possible (one instance being a brute force computation which
turned out to be Peter’s rediscovery of Tate’s duality theorem for abelian
varieties over local fields). The outcome was a long joint paper of the three
of us [74] in 1998. In that paper Peter’s original method is extended beyond
rational surfaces: the method can predict a substitute of the Hasse principle
and density results for rational points on some elliptic surfaces (surfaces with
a pencil of curves of genus one). This came as quite a surprise.

Since 1998, Peter has been developing subtle variants of the method, with
application to some of the simplest unsolved diophantine equations: systems
of two quadratic forms in as low as 5 variables [69], [74], [84], diagonal quar-
tics [80] (hence some K3 surfaces, whose geometry is known to be far more
complicated than that of rational surfaces); diagonal cubic surfaces and hyper-
surfaces over the rationals [85]. The first two applications assume Schinzel’s
hypothesis and finiteness of Tate-Shafarevich groups, but [85] (on diagonal
cubic surfaces) only assumes the latter finiteness: this theorem of Peter’s
on diagonal cubic surfaces, both by the result and by the subtlety of the
proof, is certainly the most spectacular one obtained in the area in the last
ten years. For instance, under the finiteness assumption on Tate-Shafarevich
groups, the local-to-global principle holds for diagonal cubic forms in at least
5 variables over the rationals.

In 1996, rather wild guesses were made on two different topics: For which
varieties do we expect potential density of rational points? For varieties
over the rationals with a Zariski-dense set of rational points, what should we
expect about the closure of the set of rational points in the set of real points
(question of B. Mazur)? Peter had the idea to call in bielliptic surfaces to
produce unexpected answers to the second question. Skorobogatov and I
elaborated, and applied the mechanism to get rid of preliminary guesses for
the first question. This led to a joint work between the three of us [70]. There
has been recent (conjectural) progress on an answer to the first question
(work of complex algebraic geometers). The same bielliptic surfaces were
later used by Skorobogatov (1999) to produce the first ever example of a
surface for which the Brauer-Manin obstruction is not the only obstruction
to the Hasse principle. This has led to further developments by D. Harari
and Skorobogatov (descent under noncommutative groups).

Peter also contributed two papers [65], [77] to a topic which has seen quite
some activity over the last ten years: the behaviour of the counting function
for points of bounded height on Fano varieties. He pointed out the way to
the correct guess for the constant in the standard conjecture (later important
work in this area was done by E. Peyre and others). The lower bound he
obtained (jointly with J. B. Slater [77]) for cubic surfaces is still one of the
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best results in this area.

The line of investigation Peter started in 1994 with the paper [69] is very
delicate, and while his 2001 paper on diagonal cubic surfaces [85] is quite
a feat, I am sure that Peter will produce much more in this exciting new
direction. I am confident that he will keep on being as generous with his
ideas as he has always been and that he will allow some of us to accompany
him along the way.

Orsay, the 13th of February, 2003

3 Peter Swinnerton-Dyer: Geometer and
politician
by G.K. Sankaran

Peter Swinnerton-Dyer’s interest in algebraic geometry derives arguably from
its relation to number theory, and from the formative period he spent with
André Weil in Chicago in the 1950s, but he has also made important contribu-
tions to geometry over algebraically closed fields. Probably his most notable
technical result of a purely geometric nature is the proof (described elsewhere
in this preface by Jean-Louis Colliot-Thélene) that stable rationality does not
imply rationality [59]. This was, probably, contrary to the expectations of the
majority of algebraic geometers at the time; though, as often happens, it is
hard with hindsight to imagine why anybody ever thought the opposite was
true. The result, published in French in a joint paper with Beauville, Sansuc
and Colliot-Thélene, uses a wide range of techniques from different parts of
algebraic geometry: torsors, linear systems with base points, Prym varieties
and singularities of the theta divisor. It arose, however, out of arithmetic
work with Sansuc and Colliot-Thélene. Many of Peter’s arithmetic results
have a geometric flavour, especially his work with Bombieri and with Artin;
and it is now appreciated among geometers that arithmetic information can
be made to yield geometrical or topological information (in addition to the
well-known consequences of the Weil Conjectures). Rational and abelian va-
rieties particularly feature in his work: these topics are represented in this
volume by the papers of Reid and Suzuki and of Sankaran respectively.
Within algebraic geometry, however, Peter’s chief influence has been as
teacher, expositor, supplier of encouragement and enthusiasm, and éminence
grise. He recognised, at a time when few in Britain were more than dimly
aware of it, the power of the French school of algebraic geometry of Weil,
Serre and Grothendieck. In the 1970s he encouraged his then student Miles
Reid to visit Paris and learn directly from Deligne. The flourishing state of
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British algebraic geometry at the present day owes much to this development,
and to Peter’s encouragement and direction of later students. His Cambridge
Part III courses have been a source of inspiration to many, and his book on
abelian varieties and his account of the basic facts of Hodge theory have been
of great service to even more.

Many of Peter’s multifarious activities are completely unrepresented in
this book. The purpose of the rest of this note is to allude to some of them. I
am not the best person to write such a note (that would be Peter Swinnerton-
Dyer): I have drawn on my memories of conversations with many people,
among them Carl Baron, Arnaud Beauville, Bryan Birch, Béla Bollobds, Jean-
Louis Colliot-Thélene, James Davenport, Nicholas Handy, Richard Pinch,
Colin Sparrow, Miles Reid, Pelham Wilson, Rachel Wroth and, above all,
Peter Swinnerton-Dyer.

Mathematically the most obvious of Peter’s other activities is his sub-
stantial contribution to the theory of differential equations, including a paper
with Dame Mary Cartwright published only in Russian [55]. He is still active
in differential equations. Readers of the present volume will have no diffi-
culty in finding more information about this part of Peter’s work. Slightly
further afield, Peter was a member of the computing group in Cambridge in
the 1960s, in the days of the Cambridge University computer TITAN. The
original operating system for this famous machine, known as the Temporary
Supervisor, was written by Peter single-handed, and it worked. He wrote
the computer language Autocode for the same machine, and most Cambridge
mathematicians of the 1960s had their first programming instruction in this
language. Who could ask for anything more?

Peter, then Dean of Trinity College, was elected Master of St Catharine’s
College in 1973 and remained there for ten years. Littlewood is said to
have greeted the news with Clemenceau’s remark on hearing that the pianist
Paderewski was to be Prime Minister of Poland: ‘Ah, quelle chute!”. But St
Catharine’s afforded Peter considerable scope, and by all the numerous ac-
counts I heard, as a later Fellow of St Catharine’s, he was highly successful.
The head of a Cambridge College (of Oxford I cannot speak) is commonly all
but invisible to the students, and in some cases even to the Fellows. Peter
was not: he has never been averse to the company of students and he was
even willing to do College teaching. As he could and would teach almost any
course in the Mathematical Tripos, the task of the Director of Studies (who
is responsible for arranging for the students to be taught) was occasionally
much simplified.

While at St Catharine’s he served as Vice Chancellor of the University.
This is now a full-time post held for a long period, but at the time the
Vice Chancellor was chosen from among the heads of the various colleges
and served for two years only. The role of the Chancellor (then, as now,
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the Duke of Edinburgh) is purely ceremonial, and the Vice Chancellor is in
effect at the head of the University. It is a job for a skilled diplomatist.
Cambridge University is a highly visible organisation, under constant and
occasionally hostile scrutiny by newspapers and television. Internal matters
can lead to very acrimonious public debate, and in extreme cases, which
are quite common, the Vice Chancellor is expected to reconcile the factions.
During Peter’s term of office there was one especially well-publicised dispute
about whether a tenured post should be awarded to a particular person. It
was clearly impossible to satisfy all parties, but Peter nevertheless managed
to bring the matter to a conclusion without offending anybody further. Who
could ask for anything more?

Peter left St Catharine’s to take up a post as Chairman of the Univer-
sity Grants Commission, a semi-independent Government body which was
charged with deciding how Government funding ought to be apportioned
among different universities. He had already written an influential, and in
some quarters unpopular, report on the structure of the University of Lon-
don, and was thus well known to be of a reforming cast of mind. He was also
widely assumed to be in general political sympathy with the government of
the time (otherwise, the reasoning ran, why did they appoint him?); but this
was far from the case. He was nevertheless able to use his position to defend
the reputation of the universities for financial responsibility, and in particular
to establish the principle that research is a core activity for any university and
therefore merits funding on its own account, independently of teaching. The
price to be paid was investigation by government of the research activities
of universities. Peter is thus often held responsible for, or credited with, the
Research Assessment Exercise, which attempts to grade British university
departments (not individuals) roughly according to the quality of research
that they produce, and then hopes that they will be funded accordingly. The
system is agreed to be imperfect, but it is easier to think of worse alternatives
than better ones.

Peter’s first involvement in politics dates from early in his tenure as Mas-
ter of St Catharine’s. The Member of Parliament for Cambridge resigned his
seat and a by-election had to be held. Among the candidates was a represen-
tative of the Science Fiction Loony Party, whose aim in standing was to have
some fun, and if possible to do better than the extreme right-wing candidate.
Candidates in British parliamentary elections are required to pay a deposit of
a few hundred pounds, returnable if they receive a certain proportion (then
one-eighth) of the votes cast. In this case there was no prospect of that, so
the deposit was, in effect, a fee: Peter, a wealthy man, paid it. He explained
that the candidate “deserved every possible support, short of actually voting
for him”. Later his own name was mentioned as a possible parliamentary
candidate, on behalf of the more serious but probably less entertaining Social
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Democratic Party formed by Roy Jenkins and other disaffected members of
the Labour Party in 1981. Nothing came of the plan, if it ever existed. The
SDP seems, understandably, to have been unable to believe that all Peter’s
activities were the work of one man, and on occasion sent him two copies of
the same letter, one for Swinnerton and one for Dyer.

Peter is a strong Chess player. Even when Vice Chancellor, he used to put
in occasional appearances at the Cambridge University Chess Club, playing
five-minute against undergraduates. The story is that when appointed to a
Trinity research fellowship, he was strongly advised to cut down the time he
spent on Chess; and that his interest in Bridge dates from this time. He was
to become a very strong Bridge player. He was a member of the team that
won the British Gold Cup in 1963, and he acted as non-playing captain of
the Great Britain Ladies’ Bridge team.

On leaving UGC (by then renamed UFC) Peter resumed work as a math-
ematician as if nothing had happened. He also continued his life of public
service, working on behalf of such diverse institutions as the World Bank and
the Isaac Newton Institute: he is still frequently to be found at the latter, at
least.

Peter’s work at UGC/UFC was recognised by the award of a knighthood
(a KBE, to be precise). The editors of this volume tell me that “how did
Swinnerton-Dyer get his title?” is a frequently asked question after seminars
in places such as Buenos Aires and Vladivostok: at the risk of spoiling the
fun, here is an explanation.

Peter is a baronet: he is also a knight. A baronet is entitled to call himself
“Sir”, and when he dies his eldest son, or some other male relative if he has
none, inherits the title. It is only a title: it does not give him a seat in the
House of Lords, and never has. Baronetcies were invented by King James I,
early in the seventeenth century, as a way of raising money: they were simply
sold. Later baronetcies were awarded for actual achievement, but the oldest
ones are purely mercenary affairs. Since no baronetcies have been created
for many years, all current baronets have inherited their titles rather than
earning or buying them. A knight is also entitled to call himself “Sir”, but
the title dies with him. Knighthoods, which are still awarded in quite large
numbers, are for specific personal achievements: they are given by the Queen
on the recommendation of the Prime Minister. By the time he was knighted,
Peter was already a baronet, so already entitled to call himself “Sir Peter”
(not “Sir Swinnerton-Dyer”). For this reason he is sometimes referred to as
(Sir)? Peter, although strictly speaking “Sir” is idempotent: he is technically
Professor Sir Henry Peter Francis Swinnerton-Dyer, FRS, Bt., KBE.

Bath, 12th Feb 2003
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4 Peter Swinnerton-Dyer, man and legend
by Miles Reid

I was supervised by Peter as a second year Trinity undergraduate. From
then on, I was among the many Cambridge students who were occasionally
invited for sherry at 7:30 pm (before Hall at 8:00 pm). For me and many
other middle-class students of my generation, this provided an education into
hitherto unsuspected areas of culture, such as good quality sherry, opera, col-
lege politics, famous math visitors, the workings of the British upper classes,
etc. Peter is 16th Baronet Swinnerton-Dyer, and his family was an illustra-
tion that the feudal system was still alive and well, in Shropshire, at least in
1949: he had an elegant clock on the mantlepiece of his Trinity New Court
apartment, with an inscription

“Presented to Henry Peter Francis Swinnerton-Dyer Esq by the
tenants, cottagers and employees of the Westhope estate on the
occasion of his coming of age”.

Peter’s legendary status was already well established — as a sample of the
stories in circulation, when Galois theory was introduced as a Part II course
lectured by Cassels, Peter claimed that the whole course could be given in 4
hours, and made good his claim one evening between 10 pm and 2 am. An-
other story about bridge, that I heard from Peter himself: At a tournament,
Peter called over the referee, told him formally that he was not making an
error or oversight, then bid 8 clubs. Although this bid is impossible, he had
calculated that he would lose less going down in it than allowing his oppo-
nents to make their grand slam. He knew the fine wording of the rules of
bridge, and the match referee was forced to accept the impossible bid, since
it was not made by error or oversight; the rules were subsequently changed
to block this obscure loophole.

At that time Peter was Dean of Trinity; the position included disciplinary
control of students. Those caught walking on the grass in College would be
sent to Peter, and would in theory be fined in multiples of 6/8 (that is, 6
shillings and 8 pence, a third of a pound). In my case, for a particularly
unpleasant misdemeanour, my sentence was to wash Peter’s car.

Peter had an affinity with math students, and would drop in on friends
in the evening to see if there was a conversation going on; I can well be-
lieve that student company was more fun than that of the senior combination
room. He would often join in conversations, or dominate them — his predilec-
tion for that well-turned phrase certainly had a lasting effect on my literary
pretensions. (For example: Would he send his son to Eton? “Certainly, it
has advantages both in this life, and in the life that is to come.”) Or, he
would sometimes simply be comfortable among student friends and nod off
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to sleep (presumably this mainly happened after wine in the Combination
room following High Table dinner). On one occasion, we played the board
game Diplomacy from after dinner until breakfast the following morning —
with great cunning and skill, Peter unexpectedly murdered me treacherously
at about 6:00 am. Outside board games, Peter was extremely generous with
friends and colleagues — many of us were invited to accompany him on a trip
to the opera in London, or on a car trip to Norway, Paris or Italy, with ap-
propriate stops to appreciate the great cathedrals and the starred restaurants
of the Michelin guide.

As a PhD student I started to get more specific mathematical benefit from
Peter’s advice. He helped Jean-Louis Colliot-Thélene and me set up a seminar
to study Mumford’s little red book, and was always in a position to illustrate
our questions with some example from his own research experience, although
his background in Weil foundations meant that there was always the added
challenge of a language barrier. The subject of my thesis (the cohomology of
the intersection of two quadrics), given to me by Pierre Deligne, turned out
to be closely related to Peter’s work with Bombieri on the cubic 3-fold [22].
Peter was also in the thick of the action surrounding modular forms at the
time of the 1972 Antwerp conference [43]-[45].

From 1978, when I got married and left Cambridge for Warwick, my
contact with Peter became less frequent. A few years later, Peter married
the distinguished archeologist Harriet Crawford (reader at UCL and author
of 3 books in the current Amazon catalogue). Together with everyone else
in British academia, I was frequently aware, often through the media, of his
activities as Vice Chancellor of Cambridge, as Chairman of the University
Grants Committee, as the person who persuaded the conservative government
of Mrs Thatcher (“We shall not see her like again!”) to accept research as
the main criterion for judging the quality of universities, and in numerous
other capacities. As a member of the British Great and Good, he chaired
any number of committees or public enquiries, investigating anything from
parochial malpractice at British universities (see

http://www.freedomtocare.org/page37.htm),

to the disastrous storm of 16th October 1987 (this on behalf of the Secretary
of State, see Meteorological Magazine 117, 141-144). I met him, for example,
in Japan on a mission to investigate the state of university libraries.

At about the time Peter retired from the UGC, Warwick University had
the foresight to offer him the position of Honorary Professor. He has visited
us on many occasions in this capacity, both on Vice Chancellor’s business
and for mathematical visits, on each occasion giving us the full benefit of
his wit and wisdom (for example, his scathing comments on teaching assess-
ment in universities: “The Teaching Quality Assessment was an extremely
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tedious farce, bloody silly”). On several occasions he has given two mathe-
matical lectures on the same day, one in Diophantine geometry and another
in differential equations, before taking us all out to a very good dinner.

Peter is more active in research than ever at age 75, and in closer con-
tact with us at Warwick: he has repeated his lecture series “New methods
for Diophantine equations” (first given in Arizona in December 2002) as a
Warwick M.Sc. course, driving over each week and meeting us for lunch in a
Kenilworth pub, at which Peter takes two pints of cider to put him in good
voice for the afternoon lectures.

I close with some Swinnerton-Dyer quotes:

e To have a computer job rejected by the EDSAC 2 Priorities Committee,
“You had to be both stupid and arrogant — neither alone would do it.”

e On meeting Colin Sparrow in King’s Parade “I have been made Chair-
man of UGC. Waste of a knighthood!”

e “They aren’t true, of course, but one believes them at least as much as
one believes the Thirty-Nine Articles of the Church of England.”

e In Trinity College parlour with Alexei Skorobogatov (in connection with
the dogma of the Orthodox Church): “In order to become a clergyman
in the Church of England you need to believe only one thing — that it
is better to be wealthy than poor.”

Warwick, 21st Feb 2002

5 Editor’s preface to the volume
by Alexei Skorobogatov

The papers in this volume offer a representative slice of the delicately inter-
twined tissue of analytic, geometric and cohomological methods used to attack
the fundamental questions on rational solutions of Diophantine equations.
A unique feature of the study of rational points is the enormous variety of
methods that interact and contribute to our understanding of their behaviour:
to name but a few, the Hardy-Littlewood circle method, the geometry of the
underlying complex algebraic varieties, arithmetic and geometry over finite
and p-adic fields, harmonic analysis, Manin’s use of the Brauer—Grothendieck
group to define a systematic obstruction to the Hasse principle, the theory of
universal torsors of Colliot-Thélene-Sansuc, and the analysis of Shafarevich—
Tate groups. It is no exaggeration to say that pioneering work of Peter
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Swinnerton-Dyer was an early example of many of these techniques, and a
source of inspiration for others. The contents of this volume, that we now
describe, reflect this vast influence.

Analytic number theory

The paper by Enrico Bombieri and Paula B. Cohen “An elementary ap-
proach to effective diophantine approrimation on G,,” concerns approxima-
tions of high order roots of algebraic numbers, with applications to Diophan-
tine approximation in a number field by a finitely generated multiplicative
subgroup. Such results can be obtained from the theory of linear forms in
logarithms, whereas Bombieri’s new approach is based on the Thue—Siegel—-
Roth theorem. The main improvement comes from a new zero lemma that is
simpler than the lemma of Dyson employed up to now. The results sharpen
Liouville’s inequality for rth roots of an algebraic number a. More precisely,
the authors obtain a lower bound for the distance |a*/" — «y|, where 7 is an
algebraic number, and | - | a non-Archimedean absolute value.

Roger Heath-Brown’s paper “Linear relations amongst sums of two
squares” is an inspiring example of what analytic methods can do for the study
of rational points. The main result of the paper is an asymptotic formula for
the number of integral points of prescribed height on a class of intersections
of two quadratic forms in six variables. This formula accounts for possible
failures of weak approximation. The result is a significant advance in the
state of knowledge on density of rational points, for existing methods (such
as the circle method) provide asymptotic formulas given by the product of
local densities. Heath-Brown determines the additional factor that reflects the
failure of weak approximation — a conclusion that was hitherto inaccessible.
Such a result should provide a stimulus to establish analogous conclusions for
a broader range of examples. The proof involves descent to an intersection
of quadratic forms, to which analytic methods can be applied. The analysis
here is delicate, and motivated by earlier work of Hooley and Daniel.

Diophantine equations

Andrew Bremner’s short note “A Diophantine system” finds infinitely
many nontrivial Q-rational points on the complete intersection surface given
by

oy + ok + b =yr +yb +yf for k=2,3,4.

Trivial solutions to this system, with the second triple a permutation of the
first, are of no interest, but only one nontrivial rational solution was previously
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known. The proof is the observation that the hyperplane section x; + o +
y1 + y2 = 0 gives an elliptic curve of rank 1.

In “Valeurs d’un polynome a une variable représentées par une norme”,
Jean-Louis Colliot-Thélene, David Harari and Alexei Skorobogatov
consider the Diophantine equation P(t) = Ng/(2), where P(t) is a polyno-
mial and Ng/x(2) the norm form defined by a finite field extension K/k. The
paper builds on previous work by Heath-Brown and Skorobogatov, who com-
bined the circle method and descent to prove results on rational solutions of
this equation for P(t) a product of two linear factors and £ = Q. Tt studies in
detail the Brauer group of a smooth and proper model of the variety given by
P(t) = Ngyi(2), with k an arbitrary field, and calculates it explicitly under
some additional assumptions. On the other hand, when £ = Q and P(t) is a
product of arbitrary powers of two linear factors, the Brauer—-Manin obstruc-
tion is proved to be the only obstruction to the Hasse principle and to weak
approximation. This leads to some new cases of the Hasse principle.

The consensus among experts seems to be that the failure of the Hasse
principle for rational surfaces can be characterised in terms of the Brauer—
Manin obstruction (this is far from being settled; possibly the closely related
problem for zero-cycles of degree 1 has more chances of success). Recent work
of Skorobogatov shows that this fails for some bielliptic surfaces; the paper
of Laura Basile and Alexei Skorobogatov “On the Hasse principle for
bielliptic surfaces” explores this area, providing positive and negative results
as testing ground for a future overall conjecture.

In his contribution “On the obstructions to the Hasse principle”, Per
Salberger gives a new proof of the main theorem of the descent theory
of Colliot-Thélene and Sansuc. Surprisingly, this new approach avoids an
explicit computation of the Poitou—Tate pairing at the crucial point of the
proof, relying instead on standard functoriality properties of étale cohomol-
ogy. One of the results was obtained independently by Colliot-Thélene and
Swinnerton-Dyer, following Salberger’s innovative 1988 paper. It is inter-
esting to note that whereas Colliot-Thélene and Swinnerton-Dyer extended
Salberger’s original method, in the present paper Salberger uses for the first
time Colliot-Thélene and Sansuc’s universal torsors to prove results about
zero-cycles. This demonstrates in a striking way that universal torsors are
well adapted not only for rational points, but also for zero-cycles. This ap-
proach may eventually advance our understanding of the following question
of Colliot-Thélene: is the Brauer-Manin obstruction to the existence of a
zero-cycle of degree 1 the only obstruction, if we assume the existence of such
cycles everywhere locally?
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Shafarevich—Tate groups

Neil Dummigan, William Stein and Mark Watkins’ paper “Construct-
ing elements in Shafarevich—Tate groups of modular motives” gives a criterion
for the existence of nontrivial elements of certain Shafarevich—Tate groups.
Their methods build upon Cremona and Mazur’s notion of “visibility”, but
in the context of motives rather than abelian varieties. The motives con-
sidered are attached to modular forms on I'g(N) of weight > 2. Examples
are found in which the Beilinson—Bloch conjectures imply the existence of
nontrivial elements of these Shafarevich—Tate groups. Modular symbols and
Tamagawa numbers are used to compute nontrivial conjectural lower bounds
for the orders of the Shafarevich-Tate groups of modular motives of low level
and weight < 12.

Tom Fisher’s paper “A counterexample to a conjecture of Selmer’ an-
swers the following question. Let K be a number field containing a primitive
cube root of unity, and £ an elliptic curve over K having complex multiplica-
tion by v/—3. Is the kernel of this complex multiplication on the Shafarevich—
Tate group of E over K of square order? The answer is positive if £ is defined
over a subfield k C K such that [K : k] = 2, K = k(1/—=3), assuming that the
Shafarevich—Tate group of E over k is finite. Examples show that without
this assumption the answer can be negative. These results play an impor-
tant role in the new method for proving the Hasse principle for pencils of
curves of genus 1, first used by Heath-Brown and then artfully employed by
Swinnerton-Dyer in his recent paper on the Hasse principle for diagonal cubic
forms.

In “On Shafarevich—Tate groups of Fermat jacobians’, William Mec-
Callum and Pavlos Tzermias find all the points on the Fermat curve of
degree 19 with quadratic residue field; these turn out to be the points pre-
viously described by Gross and Rohrlich. The result about rational points
is an application of the following result about the Shafarevich—Tate groups.
For an odd prime p, let I be a quotient of the pth Fermat curve by p,, and
let J be the jacobian of F'. Then J has complex multiplication by the ring
of integers of the cyclotomic field K' = Q((,). The authors prove that in
certain cases there are nontrivial elements of order exactly (1 — ¢,)® in the
Shafarevich-Tate group of J over K.

Zagier’s conjectures

In his paper “Kronecker double series and the dilogarithm”, Andrey Levin
gives an explicit expression for the value of a certain Kronecker double series
at a point of complex multiplication as a sum of dilogarithms whose arguments
are values of some modular unit of higher level. This result can be interpreted
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in the spirit of Zagier’s conjecture. The special value of the Kronecker double
series is equal to the value of the partial zeta function of an ideal class for
an order in an imaginary quadratic field. The values of the modular unit
mentioned above belong to the ray class field corresponding to this order.
This gives an explicit formula for the value of a partial zeta function at s = 2
as a combination of dilogarithms of algebraic numbers.

Complex algebraic geometry

In “Cascades of projections from log del Pezzo surfaces’, Miles Reid and
Kaori Suzuki weave a fantasy around the fascinating old algebraic geo-
metric construction (del Pezzo, 1890) of the blowup of P? in d < 8 general
points and its anticanonical embedding. Some natural families of del Pezzo
surfaces with quotient singularities are organized in ‘cascades’ of projections,
similar to the way that the classic nonsingular del Pezzo surfaces are ob-
tained by successive projections from the del Pezzo surface of degree 9 in
P? (in other words, P? in its anticanonical embedding). Apart from their
geometric beauty, these examples illustrate the technique of ‘unprojection’, a
good working substitute for an as yet missing structure theory of Gorenstein
rings of small codimension, and a possible tool to eventually construct one.
The authors also sketch a program for the study of singular Fano 3-folds of
index > 2 according to their Hilbert series, modelled on the 2-dimensional
case.

Gregory Sankaran studies the bilevel structures on abelian surfaces first
introduced by Mukai. Given a (1,t)-polarized abelian surface A, a bilevel
structure on A consists of a (canonical) level structure on A and a (canoni-
cal) level structure on the dual variety 121\, which also carries a natural (1,¢)-
polarization. The corresponding moduli problem gives rise to a Siegel mod-
ular threefold AP!. Mukai proved the rationality of these moduli spaces for
t = 2,3 and 5. He also related them to the symmetry groups of the Platonic
solids and to projective threefolds with many nodes. In “Abelian surfaces
with odd bilevel structure” Sankaran proves that AP! is of general type for
odd t > 17. A result of Borisov says that AP is of general type for all but
finitely many ¢. Borisov’s method, however, gives no explicit bound.

Imperial College, Mon 24th Feb 2003

Bryan Birch,
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On the Hasse principle for bielliptic surfaces

Carmen Laura Basile and Alexei Skorobogatov

To Sir Peter Swinnerton-Dyer

From the geometer’s point of view, bielliptic surfaces can be described
as quotients of abelian surfaces by freely acting finite groups, that are not
abelian surfaces themselves. Together with abelian, K3 and Enriques surfaces
they exhaust the class of smooth and projective minimal surfaces of Kodaira
dimension 0. Because of their close relation to abelian surfaces, bielliptic
surfaces are particularly amenable to computation. At the same time they
display phenomena not encountered for rational, abelian or K3 surfaces, for
example, torsion in the Néron—Severi group, finite geometric Brauer group,
non-abelian fundamental group. This curious geometry is reflected in amusing
arithmetical properties of these surfaces over number fields.

The behaviour of rational points on bielliptic surfaces was first studied
by Colliot-Thélene, Swinnerton-Dyer and the second author [CSS] in relation
with Mazur’s conjectures on the connected components of the real closure of
Q-points. The second author then constructed a bielliptic surface over QQ that
has points everywhere locally but not globally; moreover, this counterexample
to the Hasse principle cannot be explained by the Manin obstruction [S1] (see
also [S2], Ch. 8). D. Harari [H] showed that bielliptic surfaces give examples of
varieties with a Zariski dense set of rational points that do not satisfy weak
approximation; moreover this failure cannot be explained by the Brauer—
Manin obstruction.

A discrete invariant of a bielliptic surface is the order n of the canonical
class in the Picard group. The possible values of n are 2, 3, 4 and 6. The
surface contructed in [S1] has n = 2. Until now this was the only known
counterexample to the Hasse principle that cannot be explained by the Manin
obstruction. In this note we construct a similar example in the case n = 3.
The difference is that we now need to consider elliptic curves with complex
multiplication. The actual construction turns out to be somewhat simpler
than in [S1]. In contrast, for the bielliptic surfaces with n = 6 we prove
that the Manin obstruction to the Hasse principle is the only one (under the
assumption that the Tate-Shafarevich group of its Albanese variety is finite).
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1 Bielliptic surfaces

Let k be a field of chark = 0, and k be an algebraic closure of k. For a
k-variety X we write X = X X k.

Definition 1 A bielliptic surface X over k is a smooth projective surface
such that X is a minimal surface of Kodaira dimension 0, and is not a K3,
abelian or Enriques surface.

Bielliptic surfaces over k were classified by Bagnera and de Franchis (see
[B], VI.20). Their theorem says that any bielliptic surface over k can be
obtained as the quotient of the product of two elliptic curves FE x F' by a freely
acting finite abelian group. The geometric genus of any bielliptic surface is 0.
For a bielliptic surface X let n be the order of K+ in Pic X. It follows from
the Bagnera—de Franchis classification that n can be 2,3,4 or 6 (loc.cit.).

Proposition 1 Let X be a bielliptic surface over k. There exists an abelian
surface A, a principal homogeneous space Y of A, and a finite étale morphism
f:Y — X of degree n, that is a torsor under the group scheme pi,.

Proof The natural map Pic X — Pic X is injective, hence nK is a prin-
cipal divisor. We write nKy = (¢), where ¢ € k(X)*. Let Y be the nor-
malization of the covering of X given by t" = ¢. Then the natural map
f:Y — X is unramified, and is a torsor under p, (cf. [CS], 2.3.1, 2.4.1).
This implies that Ky = f*Kyx = 0. By the classification of surfaces, Y is an
abelian surface. (It is not K3 as the only unramified quotients of K3 surfaces
are Enriques surfaces.) Let A be the Albanese variety of Y, defined over k
(see [L], I1.3). Then A is the Albanese variety of Y. The choice of a base
point makes Y an abelian variety isomorphic to A, so that Y is naturally
a principal homogeneous space of A. Choose 7, € Y (k), then we have an
isomorphism Y — A that sends 7 to 7 — 7,. Then p(g) = 97, — 7, is a contin-
uous 1-cocycle of Gal(k/k) with coefficients in A(k). Let A” be the principal
homogeneous space of A defined by p; it corresponds to the twisted Galois
action (g,a) — 9a + p(g), where @ € A(k) (see [S], IIL.1, or [S2], 2.1). Then
the above k-isomorphism Y — A descends to a k-isomorphism Y — A°. O

Note that the analogue of the proposition fails in higher dimension because
there are many more possibilities for Y.

2 Group action on principal homogeneous
spaces of abelian varieties

Let A be an abelian variety over k, and Z a principal homogeneous space of
A. Suppose that a k-group scheme I' acts on Z. This gives rise to a Galois-
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equivariant action of the group I'(k) on the set Z(k). The action of I' on Z
naturally defines an action of I' on A, the Albanese variety of Z. Then the
action of the group A(k) on the set Z(k) is both Galois and T'-equivariant.
Let A' be the I'-invariant group subscheme of A. Similarly, let Z' C Z be

the closed subscheme consisting of points fixed by I'.

Proposition 2 Suppose that a k-group scheme I' acts on Z in such a way
that Z* is a nonempty scheme (i.e., some k-point of Z is fived by T'(k)). Then
[Z] € Im[H (k, AT) — H(k, A)].

Proof TakeZ € Z(k), fixed by ['(k). Then a 1-cocycle of Gal(k/k) sending
g € Gal(k/k) to 9T — T € A(k) represents the class [Z] € H'(k, A). For any
v € T'(k) we have

VOT—T)=7-9T—7-T=9 ~-T)—T=9T—T.
Therefore, 97 — 7 € A'(k). O

It is easy to see that Z' is a principal homogeneous space of A'. The A-
torsor Z is the push-forward of the A'-torsor Z' with respect to the natural
injection of group schemes A" — A. This gives an alternative proof of the
proposition.

Corollary 1 Let Ay = A/A", and a: A — A, the natural surjection. Then
[Z] € H'(k, A)|a], where

H'(k, A)[o] = ker[on.: H' (k, A) — H'(k, Ay)].

We now consider the case when Z = (' is a curve of genus 1 equipped with
a faithful action of I' that has a fixed point. Then A = FE' is the Jacobian of
C. We shall write Auty(E) for the automorphism group of E as an elliptic
curve. Now I'(k) C Autg(E), hence I'(k) is a cyclic group of order n, where
n can be 1, 2, 3, 4 or 6. A straightforward calculation shows that, excluding
the trivial case n = 1, we have one of the following possibilities:

#E" (k)

ww»bcb‘z

1
2
3
4

By Corollary 1 the first line of this table shows that if a cyclic group scheme
of order 6 acts on a curve of genus 1, then this curve has a k-point. As a
consequence of this fact we obtain in the next section a simple description of
bielliptic surfaces with n = 6.
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3 A case when the Manin obstruction to the
Hasse principle is the only one

Proposition 3 Let X be a bielliptic surface over k such that the order of
K+ in PicX is 6. There exist an elliptic curve E and a curve D of genus
1 such that the group scheme pg acts on E by automorphisms of an elliptic
curve (in particular, preserving the origin), and acts on D by translations, in
such a way that X = (E x D)/ .

Proof The Bagnera—de Franchis classification ([B], VI.20) says that for any
bielliptic surface X with K+ of order 6 in Pic X there exist elliptic curves C;
and Cy over k such that:

(1) e acts on C) by automorphisms of an elliptic curve (in particular,
preserving the origin);

(2) the group scheme g is a subgroup of Cy;
(3) X = (C1 x Ca)/ pe.

The free action of ug on C; x Cy makes the finite étale map Cy x Cy — X
a torsor under pg. Let us compare it with the torsor Y — X constructed in
Proposition 1.

Recall that the type of a Z-torsor under a group of multiplicative type .S is
a certain functorial map S — Pic Z, where S is the module of characters of S
(see [S2], Definition 2.3.2). A torsor under a group of multiplicative type over
an integral projective k-variety is uniquely determined up to isomorphism by
its type (this follows from the fundamental exact sequence of Colliot-Thélene
and Sansuc, see [CS], [S2], (2.22)). Therefore it is enough to compare the
respective types. There is an exact sequence

0 — Hom(ug, k) = Z/6 — Pic X — PicY,

where the second arrow is the type of the torsor Y — X, and a similar
sequence for C; x Cy — X ([S2], (2.4) and Lemma 2.3.1). Since the canonical
class of an abelian surface is trivial, K+ is in the image of Z/6 in Pic X, and
hence it is a generator of that image. Thus the types of both torsors are the
same (up to sign). Hence the pair (Y, the action of ug) can be identified with
the pair (C} x Cy, the action of ).

Let A be the Albanese variety of Y. This is an abelian surface defined
over k. Let s be the k-endomorphism of A given by s = > _ 4 0o Let Ay
(respectively As) be the connected component of 0 in ker(s) (respectively in
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A#o). Note that s acts as 0 on J; = Jac(Cy) C A, and as multiplication by 6

on Jy = Jac(Cy) C A. Therefore, A} = .J;, Ay = J,. Now the map
Ay x Ay — A, (2,y) = 7+,

is an isomorphism, since over k it is the natural isomorphism J; x J, — A.
This proves that A is a product of two elliptic curves over k. Hence Y, which
is a principal homogeneous space of A, is a product of two curves of genus 1
over k: Y = E x D, where C; ~ E, Cy, ~ D.

By the Bagnera—de Franchis theorem the group scheme pg acts on E with
a fixed point. By the remark preceding the statement of the proposition,
this point is unique, and hence is k-rational. Hence FE is an elliptic curve
(isomorphic to A;). O

See the beginning of the next section (or, in more generality, [S2], 5.2) for
the definition of the Manin obstruction.

Corollary 2 Let k be a number field. The Manin obstruction is the only
obstruction to the Hasse principle on the bielliptic surfaces X over k such
that the order of K+ in PicX is 6, and the Tate-Shafarevich group of the
Albanese variety of X is finite.

Proof By the previous proposition we have X = (E x D)/ug. Consider the
curve D' = D/ug of genus 1, and let p: X — D’ be the natural surjective
map. Let J' be the Jacobian of D’. It is known ([B], VI) that the Albanese
variety of any bielliptic surface has dimension 1. Using the universal property
of the Albanese variety (see [L], I1.3) and the connectedness of the fibres of p
one easily checks that J’ is the Albanese variety of X.

Let {Q,} be a collection of local points on X, for all places v of k, that
satisfies the Brauer—Manin conditions. Then {p(Q,)} satisfies the Brauer—
Manin conditions on D’. If III(J’) is finite, then D’ has a k-point by a
theorem of Manin (see [S2], Theorem 6.2.3). Call this point (). The inverse
image of Q in D defines a class p € H'(k, ug) = k*/k*¢. Consider the twisted
torsor B x D? — X. Now D? has a k-point over (). But the action of ug on
E preserves the origin, hence the twisted curve E? has a k-point. Therefore,
we obtain a k-point on E” x D, and hence on X. [

Note that for the bielliptic surfaces of Corollary 2 the quotient of Br X by
the image of Br k is infinite, but in the proof we only used the Brauer—-Manin
conditions given by the elements of the conjecturally finite group II(J").

Corollary 2 is a particular case of a more general situation. Let I' be an
algebraic group acting on varieties V and W such that the action on W is
free. Suppose that V has a k-point fixed by I". If the Manin obstruction to the
Hasse principle is the only one on W/T', then the same is true for (V x W)/T.
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4 Main construction and example

Now assume k = Q, and let Ag be the ring of adeles of Q. For a projective
variety X we have X (Ag) = [[, X(Q,), where v ranges over all places of Q
including the real place. Let X (Aq)®" be the subset of X (Aq) consisting of
the families of local points {P,} satisfying all the Brauer-Manin conditions.
These conditions, one for each A € Br X, are

> inv, A(P,) =0,

all v

where inv, is the local invariant at the place v, which is a canonical map
BrQ, — Q/Z provided by local class field theory. The Brauer-Manin condi-
tions are satisfied for any Q-point of X by the Hasse reciprocity law, so that
we have X (Q) C X (Ag)P". If the last set is empty, this is an obstruction to
the existence of a Q-point on X; it is called the Manin obstruction.

We now give a construction of bielliptic surfaces X for which X (Ag)®" #
0, but X(Q) = 0. Then X is a counterexample to the Hasse principle that is
not explained by the Manin obstruction.

Theorem 1 Let E be an elliptic curve over Q with a nontrivial action of the
group scheme us. Let a: E — Ey be the degree 3 isogeny with kernel E*3.
Let D be an elliptic curve with a group subscheme isomorphic to us. Assume
that:

(i) Gal(Q/Q) acts nontrivially on E*3;

(iii) C is a principal homogeneous space of E representing a nontrivial ele-
ment of ILI(E)[a.];

(iv) Sel(D, u3) = 0, that is, for any principal homogeneous space of D o0b-
tained from a nontrivial class in H'(Q,u3) = Q*/Q*3, there exists a
place v where it has no Q,-point.

Then X = (C x D)/us is a counterezample to the Hasse principal not ex-
plained by the Manin obstruction.

Let us give an example of curves C' and D satisfying the conditions of the
theorem. Let ( be a primitive cubic root of unity.

Let C be the plane cubic curve z® + 11y3 + 4323 = 0, where the root
of unity ( acts by (z : y : z) — (2 : y : (z). The Jacobian F of C is the
plane curve 23 + 3® + 47323 = 0, with the action of us given by the same
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formula. One easily checks that Condition (i) is satisfied. Condition (ii) is
verified in Example 4.3 of [F2]. The elements of H'(Q, E)[a,] are given by
the curves ma® + m?y? + 4732 = 0 with m a cube-free integer. The curve
C' corresponds to m = 11. It has been known for some time [Se| that C' has
points everywhere locally but not globally. This gives Condition (iii). (See
also [Bal, VI.)

Let D be the elliptic curve u®+v*4+w?® = 0, with (1 : —1 : 0) as the origin.
The group subscheme of D generated by (1 : —( : 0) is isomorphic to pz. The
translation by this element is (u,v,w) — (u : (v : (*w). The elements of the
Selmer group Sel(D, u3) are represented by the principal homogeneous spaces
D, defined by u® + av® + a?u® = 0, where a is a cube free integer. Let p be
a prime factor of a. Then D, has no Q,-point. Therefore, the only curve D,
with points everywhere locally is D itself, so that Sel(D, u3) = 0, which is
our Condition (iv).

Remark On changing some of the conditions of the theorem one obtains
bielliptic surfaces for which the Manin obstruction to the Hasse principle is
the only one. We replace Condition (ii) by the condition II(E)[a,] = 0, and
instead of Condition (iii) we require that C' is any principal homogeneous
space of E whose class is in H'(Q, E)[a,]. We drop Condition (i) and keep
Condition (iv). Then the Manin obstruction is the only obstruction to the
Hasse principle for the surfaces (C'x D)/us. For the proof, consider the torsor
C x D — (C x D)/us under pz. Under our assumptions the class of twists
Cr x D?, p € Q*/Q*3, satisfies the Hasse principle. By descent theory ([S2],
Corollary 6.1.3 (2)) this implies our statement.

5 Proof of the theorem

Consider the alternating Cassels pairing III(£) x III(£) — Q/Z. Its restric-
tion to HI(E)|a.] gives an alternating pairing

II(E)[o.] x TI(E)[o.] — Q/Z. (1)

The kernel of the last pairing is the image of of: III(E;) — III(F), where
o' By — E is the dual isogeny. (This seems to be part of the folklore; see
[F1] for a proof.) Since HI(E)[a.] = Z/3Z by Condition (ii), the pairing
(1) must be zero. Therefore, there exists a principal homogeneous space
C} of Fy with points everywhere locally, that lifts C'. This means that the
map o': H'(Q,E;) — HYQ, E) sends [Cy] to [C]. There is a finite étale
morphism C; — C that represents C' as the quotient of C; by the action
of ker(a'). Let Y = C x D, Yy = C; x D. This gives rise to a finite étale
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morphism Y; — Y which is the identity on D. Let f; be the composition of
the finite étale maps Y7 — Y — X, and let 7: Y7 — D be the projection
to the second factor. In this notation we have the following key property
analogous to ([S1], Theorem 1):

fi(BrX) C n*(BrD,). (2)

To prove this we note that for any smooth and projective surface X with
py = 0, in particular, for a bielliptic surface, we have an isomorphism of Ga-
lois modules Br X = Hom(NS(X )5, Q/Z) (see [G], 1I, Corollary 3.4, III,
(8.12)). As in the proof of Corollary 2 one shows that the Albanese va-
riety of X is D/us. The same argument as in ([S1], pp. 403-404) works
in our situation, and we obtain NS(Y)WS = E#3. Then (i) implies that
(Br X)G(@Q — (. Therefore, Br X = ker[Br X — BrX]. A well known
Leray spectral sequence shows that the quotient of this group by the image
of BrQ is naturally isomorphic to H'(Q, Pic X) ([S2], (2.23); here we use
the fact that H3(Q, @*) = 0). The analysis of the morphism of Galois mod-
ules f;: PicX — PicY; is carried out in the same way as in the proof of
Lemma 2 of [S1], where the multiplication by 2 on E has now to be replaced
by the isogeny a: E — E;. The result is that the image f;(H'(Q,PicX))
in H'(Q,PicY) is contained in 7*(H'(Q, Pic D)). Formula (2) now follows
from the functoriality of the Leray spectral sequence.

Let us construct an adelic point on X satisfying all the Brauer-Manin
conditions. Take a rational point R € D(Q), and a collection {P,} € C1(Ag).
Then f,({(P,,R)}) € X(Ag)®, as follows from (2) and the Hasse reciprocity
law.

It remains to show that there are no Q-points on X. Indeed, rational
points on X come from twists of Y given by a € HY(Q, u3) = Q*/Q*3. Any
such twist of Y is the product C, x D,, where C, and D, are curves of
genus 1. Moreover, D, is a principal homogeneous space of D of the kind
described in Condition (iv) of the theorem. By that condition, if D, has
points everywhere locally, then a is trivial, so that D, = D. Thus there
are no Q-points on the nontrivial twists of Y. On the other hand, Y has
no Q-points since by Condition (iii) there are no Q-points on C. Therefore,
X (Q) = 0. This completes the proof.

More details can be found in the thesis of the first author [Ba]. The
preparation of this paper was speeded up by John Voight’s notes of the con-
ference “Rational and Integral Points on Higher Dimensional Varieties” at
the American Institute of Mathematics in December, 2002. We thank him
for the notes, and the organizers for stimulating atmosphere. We are very
grateful to Tom Fisher for telling us about the curve z® 4+ 11y% + 4323 = 0.
We thank Ekaterina Amerik for useful discussions.
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An elementary approach to effective
diophantine approximation on G,,

Enrico Bombieri and Paula B. Cohen

To Sir Peter Swinnerton-Dyer, on his 75th birthday

1 Introduction

Effective results in the diophantine approximation of algebraic numbers are
difficult to obtain, and for a long time the only general method available was
Baker’s theory of linear forms in logarithms. An alternative, more algebraic,
method was later proposed in Bombieri [2] and Bombieri and Cohen [3]. This
new method is quite different from the classical approach through the theory
of linear forms in logarithms.

In this paper, we improve on results derived in [3]. These results con-
cern effective approximations to roots of high order of algebraic numbers and
their application to diophantine approximation in a number field by a finitely
generated multiplicative subgroup. We restrict our attention to the non-
archimedean case, although our results and methods should go over mutatis
mutandis to the archimedean setting.

We do not claim that our theorems are the best that are known in this
direction. Linear forms in two logarithms (which are easier to treat than the
general case) suffice to prove somewhat better results than our Theorem 5.1,
see Bugeaud [6] and Bugeaud and Laurent [7]; we give an explicit comparison
in §5, Remark 5.1.

Theorem 5.2, which is useful for general applications, follows from Theo-
rem 5.1 by means of a trick introduced for the first time in [2] and improved
in [3]. Thus any improved form of Theorem 5.1 carries automatically an
improvement of Theorem 5.2. Note however that Theorem 5.2, in the form
given here, is still far from what one can obtain directly from Baker’s theory
of logarithmic forms in many variables, as in Baker and Wiistholz [1] in the
archimedean case and Kunrui Yu [10, 11] in the p-adic case.

Notwithstanding the comparison with Baker’s theory, we feel that there
is some untapped potential here. For example, one treats with equal ease
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the archimedean and the p-adic case, while this is not so in Baker’s theory
because of the bad analytic behaviour of the p-adic exponential.

The auxiliary construction involves a universal family of two-variable poly-
nomials invariant under an action of roots of unity of a certain order. The
main new feature in the current paper is the use of an elementary Wronskian
argument, involving differentiation only in a single variable, to derive a zero
estimate which bypasses former appeals to a more sophisticated two-variable
Dyson’s Lemma. This was initially inspired by private communication be-
tween the first author and David Masser in 1984. We reproduce part of that
communication in §6.

Although the method of the current paper is more elementary, the results
obtained are sharper than those of [3]. The main results are stated in §5,
Theorem 5.1 and Theorem 5.2. Theorem 5.1 represents an improvement over
the corresponding result of [3] both in the absolute constants and in the lower
bound for r in (H1), where (log£)” is replaced by (log <), as well as in the
lower bound for h(c’) in (H2) of [3], which is no longer required. These
improvements automatically carry over to Theorem 5.2, which we restate for
convenience here in the Main Theorem. We follow the notations of [3], §2. In
particular H( ) denotes the absolute Weil height, h( ) = log H( ) the absolute
logarithmic Weil height and | |, is the absolute value associated to a place
v € Mg, normalized so that h(z) =" ), max(0,log |zl,).

We define p(z) to be the solution p(z) > € of p/(log p)® = x if z > 577,
and p(z) = €° otherwise; for large z we have p(z) ~ z(log x)°.

Main Theorem Let K be a number field of degree d and v a place of K
dividing a rational prime p. We denote by f, the residue class degree of the

extension K,/Q, and set D = max(1, 4 f(l)gp). Define a modified logarithmic

height of v € K by W (x) = max(h(z), &), and let H'(z) = exp k' (z).
Let T' be a finitely generated subgroup of the multiplicative group K*, and
write &1, ..., & for generators of T'/tors. Let £ € T', A € K* and k > 0 be

such that

0 < |1— Agl, < H'(AE)™".

Define

t

C =66p™(D;)° and Q= (2tp(C/r)) T] W (&).

=1

Then we have

W(AS) < 1607 p(C/r) Q max(H'(A), Q).
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It is an interesting problem to try to refine the auxiliary construction
of §2 to the point where the nonvanishing of P(x,y) at the point («a, ') is
immediate, that is P(a, ') # 0. In Cohen and van der Poorten [8] it is shown
that this would lead to a result comparable with the best known consequences
of Baker’s method.

Acknowledgements The second author thanks the Institute for Advanced
Study, Princeton, where much of this research was carried out with the sup-
port of The Ellentuck Fund. We also thank David Masser for permission to
include in the Appendix the text of his letter to the first author.

2 Equivariant polynomials

Let r > 2 be a positive integer and [ an integer with (I,7) = 1. For0 < j <r
we define e; to be the integer with 0 < e; < r such that

le; = —j (mod r).

Let 0 < s < r and consider the polynomial
P(z,y) =Y _ Aj(a")zy,
=0

where the A;(z) € Q[z] are polynomials in x of degree at most n, not all
identically 0. This polynomial is invariant under the action (z,y) — (', ey)
of rth roots of unity, in the sense that

P(e'x,ey) = P(x,y) whenever ¢" = 1.

We define the index i(P; &, n) of P(x,y) at a point (£,n) to be the order
of zero of P(x,n) at x = £, namely

i(P; &, n) = orde P(z,mn).

In what follows, for a real number ¢ we abbreviate t© = max(¢,0).

Lemma 2.1 We have

> max(i(Pigm) —s)" < (s+ .

geC+/{er=1}
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Proof We use the classical Wronskian argument. Let I C {0,1,...,s} be
the set of indices j such that A;(x) is not identically 0 and ¢+ 1 its cardinality.
Clearly t < s. We calculate the (¢ + 1) x (¢ + 1) Wronskian determinant

d t{ o P( )} d t{z o <A( " ) o* ( j)}
et| ———P(z, = de —Aj(z")zY ) - —
oatayt Y 0<h k<t S O\ oy

h k

0 o ‘
= det A (") x% - det J )
[8 h( i) ) {ay ( )} jEIL,0<k<t

Thus this Wronskian is a polynomial W (x)y?, with

A:Zj—t(tT—i_l)

Jjel

0<h,k<t

] 0<h<t,jcl

Moreover, W (x) is not identically 0, because the polynomials A;(z")x% are
linearly independent over @ and the monomials 3/, j € I, are also linearly
independent over Q (the A;(x) for j € I are not identically 0 by hypothesis
and the exponents in the monomials in A;(2")x% belong to different arith-
metic progressions as j varies). By looking at the determinant of the matrix
[(d/dz)"A;j(2z")x% ] we verify that

ordg W(z) > Zej — and
jel
t(t+1
orde Wi(z) <r(t+1)n+ Z ej — %
jel

Now, if we specialize y to any 1 # 0 (which does not affect the vanishing
of W(x)) and look at the first column of the Wronskian, we see that

orde W(z) > (i(P;&,m) — )
therefore we have

, +
orde W(z) > max (z(P;g, n) — t) :

Since P(z,y) is invariant we have i(P; '€, en) = i(P;&,n). Hence

r Z myz}aux((Pﬁn—t) Zmax( P§n)—t>

£eCr/{er=1} £eCx

< Z orde W(z) = ordee W(z) — ordg W(x) < r(t+ 1)n,
gec*
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concluding the proof. [
Consider now the Q-vector spaces Vo 2 Vi D -+ DV, D --- defined by

Vo={P: P =Y Aj(a")zy’},
j=0
Vi={P:PeVy, and i(P;1,1)> k}.
Lemma 2.2 The vector space Vi, has dimension

dimVy=(s+1)(n+1) — k.

Proof We abbreviate 0y for (0/0z).
It is clear that dim Vy = (s 4+ 1)(n + 1). Also, we have dim V},/Vj4q < 1,
because

Vigr = {P € Vi : (0,P)(1,1) = 0}.
Thus the lemma follows from the statement that
dim V(s+1)(n+1) = 0.

Suppose this is not the case. Then there is a polynomial P, not identically 0,
with ¢(P;1,1) > (s +1)(n+1). By Lemma 2.1 we get (s +1)(n+1) —s <
(s + 1)n, a contradiction. This completes the proof. [

Our next result gives us a small basis of the vector space V.

Lemma 2.3 There is a basis { P} of Vi such that

(s+1)(n+1)—k

1 r(n+1) 3
WP < ~k2log [ NP 4 2p2,
121: (P) <5 Og< 1k )+4

Proof Consider

S S n

P(z,1) = Z A;(z")x®

j=0 j=0 h=0

I
S
<
=
S

Then Vj, can be identified with the subspace of {a;,} € QD™ *+D defined by
the linear equations

s

Zzajh((r —.i_e]):O, for 1=0,1,...,k—1,
)

=0 h=0
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which has codimension k£ by Lemma 2.2. Let A be the associated matrix

A rh+e;
7 i=0,1,....k—1

(4,h)€{0,...,s} x{0,...,n}

By Lemma 2.2, A has maximal rank k, therefore it is a submatrix of maximal

rank of the matrix
5= ()]
1/ |i=0,1,. k-1

[=0,...,rn4+r—1
It follows that H(A) < H(B) where H( ) is the height. In our case, where
everything is over Z, the height of B is given by

2

HB) = |3 det [(“)}

where the sum ranges over all k-tuples 0 < ny < ng < --- < <r(n+1)
(note that the greatest common divisor of the determinants of all maximal

minors of B is 1).
We have
det n.j = Hh<j(nj — ) )
0 ) im0k 12t (k—1)!

as one sees by transforming the determinant into det(né /i!) and computing
the Vandermonde determinant det(n?). For the logarithmic height, this gives

1 1 ,
MB) =5 1Og(uz! k= 1) 2. [ 100 =) )

0<ni<--<ngp<r(nt+l) h<j

An exact calculation based on the theory of orthogonal polynomials can
be found in Bombieri and Vaaler [5]. Writing for simplicity N = r(n+ 1), we

have
1 = N+m k
== — < N2 =
h(B) 5 E (k |m\)log< k;—i—m) <N u(N> ,

m=—k+1
where! )
u(f) = 302 log 11g£2 + %GIOg%Z + Zlilog(l —6?)
> 2h
- %62 log % * 292 N 2:: 4(h — 1)9h(2h )
< %92 log % + %92.

!The series expansion is given incorrectly in [5], p.57 with h? —2h+2 in place of (h—1)h.
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To conclude the proof of Lemma 2.3 we simply apply the main theorem in
Bombieri and Vaaler [4] which, in our case over the rational field Q, gives the
existence of a basis { P} for V} such that

(s+1)(n+1)—k
> h(P) < h(A) <h(B). O

=0

Let a € K and suppose that a is neither 0 nor a root of unity. We fix an
rth root a = a'/" and set o/ =y ' with v € K and v # 0.

Lemma 2.4 Let M > 1. There is an tnvariant polynomial P € Vj with
rational integral coefficients such that

(P (@)™ —s) < (s+Dn+1)—k—1
"0

and

WP < %(H 1)(51 0 —% {log (%) + ;} '

Proof By Lemma 2.3, there is an invariant polynomial P(z,y) € V, with
rational integral coefficients such that

WP < %(H 1)(51 -k {bg (%) + ;} '

Lemma 2.1 gives

M

> (i(Pra™, (a)") = 5)" < (s+ ),

m=—M
while on the other hand i(P;1,1) > k because P € Vj. It follows that

M
Z (i(P; "™, (a/)™) — s)+ <(s+1)n—k+s,
m=—M
m#0

completing the proof. [
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3 The Thue—Siegel method

In this section we prove
Lemma 3.1 Let v € Mg be a finite place for which
a€ K, |od=1],<1 and | —1|, <1,

Let also k, s, n be positive integers such that s < k < (s+1)(n+1), s <r,
and A a positive real number such that

1

|1_a/|v

1
log T ol > A and log > (k— s)A. (A1)
Define D = 517 ((s +1)(n+1) — k — 1) + s+ 1. Then we have

(k—D+ 1A < M—l—%[(n—l—l)]”h(a)—irsh(fy)}
1 k? r(n+1) 3
+§(s+1)(n+1)—k[log( 4k >+§1

o (1Y 1]

Proof Fix m with —M < m < M, m # 0. We write for simplicity (§,n) =
(@™ (&)™), i = i(P3E,m). |
Let P(x,y) =Y apjz™ 4yl and Q(x,y) = ' (9;,, P)(z,y). We have

Th+€;\ ,hie
Q(a:,y):Zahj( z' J)xh+]y]

hj m

whence, setting = Q(&,7n), we have
ﬂ — Z an; (rhl—i_ 6]) alhm-‘r[(lej'i‘j)/""]m,y—mj c K.
hj m

The fact that € K rather than an extension of K is essential for our next
argument.
By definition of i,, we have

(0:,,P) (&:m) # 0,
therefore 3 # 0 and the product formula in K yields

> log|f], = 0.

weM g
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Now we estimate each term log |3, as follows.
We have

llej + gl < JUr = 1)+ (r = 1) = (| + )(r = 1) < (I] + Dr,
and since the left-hand side of this inequality is divisible by 7 we find |le;+7j| <

|[| 7. This gives |Im|h+ [(le; 4+ j)/r] |m| < |Im|(n+1). Hence for every w # v
we have

log|Bl, < [lm|(n+1)log™ al, +[m|slog™ [1/7],
r(n+1)
im + 1
where as usual €, = [K,, : Q,]/[K : Q] if w | 0o and &,, = 0 otherwise. In

the proof of the above estimate, we have used the obvious majorization

S <8 (-0

hj k=0

+ &y max log |ap;l,, + €wlog
J

w

If instead w = v, we note that since
a€K, |of-1],<1 and |/ —1], <1,
we also have [£|, =1, |n|, =1 and
€ =1, <o’ =1, <1, [n-1f, <]o' =1, <1.

The Taylor series of Q(z,y) with center at (1,1) has rational integral coeffi-
cients because Q(z,y) € Z[x,y]. Moreover, by construction, the polynomial
Q(x,1) = ' (9;,, P)(z,1) has a zero of order > (k —i,,)" at x = 1, therefore

1Bl, = 1€ (9, P) (&, )],
< max <|€ - 1|£;k_im)+7 |77 - 1|U>

< max (‘al o 1’1()k_iM)+a ‘O/ - 1‘1}) :

If we combine these estimates with the product formula we find
1 1
. . +
mln((k — Zm) log m, log m)

< [Im|(n+ 1)h(a) + [m|s h(y) + h(P) + log (fi ?)
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Using (x—y)* > (x—2)" —(y—2)" and (A1), this implies the new inequality

(k—s)"A < [Im|(n+1)h(a) + |m|sh(v)

+ h(P) + log ( rin+1)

(i — )T +s+1

)+l —9a

We take the average of this inequality for —M < m < M, m # 0. In view
of the easy estimate

log (p) < qlogg—l—q
q q

we obtain
M+1
(k—s)"A < 5 [(n+ || h(a) + s h(7)] + h(P)
M
1 , r(n+1)
— — )" 1) (1 1
+2M _M((zm st +s+1) [Og<(im—s)++s+1) + ]
iy
| M
+ — (i — 8)TA
2M ey
m#0

In order to bound the right-hand side of this inequality we replace (i,,—s)"
by a positive continuous variable z,, subject to > 2z, < (s+1)(n+1)—k—1
and estimate the maximum using Lagrange multipliers. The maximum is
achieved if z, is constant, hence z,, + s + 1 = D with D as in the statement
of the lemma. Since (k —s)™ — (D —s—1) > k — D + 1, this completes the
proof of Lemma 3.1. [

4 Simplification of the main inequality

In order to apply Lemma 3.1 we make some further assumptions and intro-
duce new variables, with the aim of tidying up the inequality stated in the
conclusion of the lemma.

First, we remove the condition that k be a positive integer. To this end, it
suffices to note that the right-hand side of our inequality increases in k and D
for 4k < r(n+ 1); thus we may drop the integrality condition on k, replacing
Dby D'= ((s+1)(n+1) —k)/(2M) + s + 1 throughout and k + 1 by k in
the left-hand side of the inequality. Note also that dropping the integrality
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condition on k makes condition (A1) even more stringent. This gives

(k= D)A < M+ S[ll(n+ Dh(a) +h()
2 r(n
+%(s+1)(7§+ 0=k [log< & 1)) +§] (41)

+ D {log < (nD+ 1)) + 1]

Next, we choose k = A(s + 1)(n +1). Then

D'=(1—N(s+1)(n+1)/(2M) +s+1.

After dividing by (s + 1)(n + 1) the resulting inequality becomes

(i-1A o L) u < ML fgha) e b))

2M n+1 s+1 s+1n+1

+ %1 A_QA [log (m) + g} (4.2)
1

n log (227 41
o | B \s+1 '

r>A>h(a), G>h(y), r=pA, s+1=0A<r, n+1=vG, (A2)

Now let

and set
Alogp = A;

decreasing A if needed, we also assume that

A<, 0<A<LL (A3)
If we suppose
2M
— A4

which implies A\/(2M) > 1/(n + 1), the above inequality simplifies to

1 M+1/]l] 1
_ < L
()\ 2]w))\log,o = — (0+1/)

2

1 A p 3 1 2Mp

+
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This inequality is obtained under assumptions (A1), (A2), (A3), (A4) and
the further assumption, implicitly made along the way, that M, 0 A and vG
are integers. We choose?

M = [2\77]. (4.4)
With this choice, (4.3) can be replaced by

1., 1 i1
_Z < [ = L I
()\ 4)\>)\logp < ()\2—1—1)(0—1—]/)

1 A2 P 3] A2 P2+ 2\
1 1 2l 2 g (2 1.
+21—)\{0g<40)\>+21+4[0g(0 2 )JF} (4:5)

We now choose
1 [Go [ 8JijA
[ J— R = A 1 | 4
e {Ill W ’ {X‘logpy (46)

note that M, 0 A and vG are integers, hence our implicit assumption is veri-
fied. An easy majorization of the right-hand side of (4.5) shows that

1., 1 1., A2(3=))
_Z < | = Z 2N 7
(/\ 4)\>/\10gp < ()\2+1) 4)\ log p + =N log p

SR MYEER T

Since o > 8\ "*(log p) ™!, we see that (4.7) implies

1 1 1 A2(3 - )

N oa2 ) Aogp < (= 41) M logp 20—

( 1 > 8P = ()\2+ )4 L Trpy
)\2

Ty [log (87*(1 4+ A*)X*(log p)*) + 4] . (4.8)

log p

Since Alog p < 1, inequality (4.8) yields

1, 1 1, A2(3 = \)
- logp < (—+1) =A% AR’
()\ 4)\>)\ogp < ()\2+ )4)\ og p + =N
)\2
——[log(A\® + \") — 4.317] . (4.
+4(1_A> [log(A\° + A7) — 4.317] . (4.9)
Note that log(\® + A7) — 4.317 < log2 — 4.317 < —3.623 < 0. Dividing both
sides of (4.9) by A\?log p and using the lower bound 1/logp > \ gives
3— A A

1 1
l— A< (1+ M) 4+ —"_ —3623———
PNy Ty

log p

2 We use here the ceiling function [2] = min,ez{n : n > z}.
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and after multiplication by 4(1 — \) and an easy simplification we find
0 < —0.623)A — X’ < 0.

This is a contradiction, and shows that one of the hypotheses (Al) to
(A4), together with the choices (4.4) and (4.6), is untenable. Therefore, (A1)
does not hold if we assume (A2), (A3), (A4) and (4.4) and (4.6). Our choice
of parameters in (4.4) and (4.6) guarantees that (A2), (A3), (A4) are verified,
except possibly for the condition s +1 < r in (A2) that must be compatible
with our choice of o in (4.6). Let us assume for the time being that this is
the case. Then if we assume the first half of (A1), namely log |1 —o!|, < —A,
we conclude that the second half of (A1) does not hold. Note also that by
(4.6) we have

o >8|lIAx*(logp)™t and v >a/ll| >8A*(logp)h; (4.10)
therefore, 2[2A72]/(vA) > SAlogp and a fortiori (A4) can be replaced by

G > Mlogp.
If we recall that we had chosen k = A(s + 1)(n + 1), we conclude that

Proposition 4.1 Let K, v, r, a, a = a'/", v be as before. Assume that

A, p, G, X satisfy r > A > h(a), p = /A, G > max(h(y),Alogp) and
0 < A < min(1,1/logp). Suppose further that

log‘l —al‘v < —MAlogp.

[ 8llJA
= A! :
’ [A“ logpw
Then if o < p we have

. Go 8|I|A
10g|1 -7 1Oé|v > —/\2 ’VW—‘ ’V#J)gp—‘ logp

Let

5 Applications to diophantine approximation
in a number field by a finitely generated
multiplicative group

As a corollary of Proposition 4.1, we derive in this section improvements of
Theorem 1 and Theorem 2 of [3]. As in that paper, we let K (v) be the residue
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field of K, and f,, e, the residue class degree and ramification index of the
extension K,/Q,. We abbreviate

d
dr = :
Jologp

D; = max(1,d}).

We assume that |a|, = 1, so that if we choose | = p/» — 1, then |a' — 1|, < 1.
From Lemma 1 of [3] we may suppose that

1 flogp 1 1

=] = .
CN_d, = d & = D:

log (5.1)

-
[1—a'f,
Continuing with the notations of §4, we suppose that r > 2A and choose

A= (D:logp)~". (5.2)
Then we can apply Proposition 4.1 and deduce that

log |1 —~tal, > —\? {@—‘ [ BliA —‘ log p (5.3)

| [ 3logp
provided that G > max(h(7v),1/D}) and also o < p.

With the modified height A'(x) defined in the statement of the Main The-
orem, the condition on G becomes G > h/(7y). Our choice for A will be
A= N(a).

For the application we have in mind, r must be relatively large compared
to h/(a) if we want a nontrivial conclusion for our final result. Thus to begin
with we assume that

r > e*Dih (a). (5.4)

In particular, log p > 4.
The next step in simplifying (5.3) consists in removing the brackets in the
ceiling function. By (4.10), (5.4), A > 1/D} and our choice of A\ we have

[ 8JI|A

= Ao > 8JI|(D;)*(log p)* > 512
S| = Ao = SiD: og o) 2 512,

hence we may remove the brackets at the cost of multiplying by 1 + 1/512,
at most. In a similar way, we have

[%] > 8G(D)*(log p)° > 512,

because G > 1/D}. Therefore, the cost of removing the brackets is at most
a factor of 1 + 1/512. Again, removing the brackets from o will not cost us
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more than a further factor 141/512. Thus the total cost in this simplification
is at most a factor (1 + 1/512)% < 1.006.

We can replace h'(y) by A/ (y'a), at a small cost. Indeed, h(y) <
h(y~'a) + h(a), hence using b’ > 1/D; we find

h(a)

W) <H(ya)+ == <Ny a)+ <(I+e D' (v la).  (5.5)

etD;
Thus the total cost of these simplifications is a factor of at most 1.006 x
(1+e™*) < 1.03. Therefore, after removing the brackets, taking into account
this small correction and making a further rounding off of constants, (5.3)
becomes the simpler

5
log|1 —~"al, > —66p™ (D;)°H(a) (log h,za)) Wy a). (5.6)

This inequality has been obtained under the assumption that s +1 < r. If
however s + 1 > r + 1, we must have

81 A
Mlogp

—‘:A0:s+127’+1:p14+1,

hence 8|I] > Aplog p. With our choice of X and [, this means that if
p(log p)~* > 8p™(Dy)" (A5)

then the condition o < p in Proposition 1 is verified.
We now summarize our results as follows.

Theorem 5.1 Let K be a number field of degree d and v an absolute value
of K dividing a rational prime p. Let a € K with a not 0 or a root of unity,
and suppose that a satisfies |al, = 1.

Let r be a positive integer coprime to p. Then a has an rth root a € K,
satisfying 0 < |1 —a?™ 7Y, < 1. Let o/ = ay ! withy € K, v # 0. Let
C =66 p’ (D)5 and 0 < K, and suppose that

C
r>p (—) h'(a). (H1)
K
Then
|Oé/ - 1’1} > H/(Qé/)frﬁ'

Moreover, if |a — 1|, < 1 then a has an rth root o € K, satisfying

0<|a—-1,<1,

and (H1) can be further improved by replacing C' with the smaller constant
C" = 66(D;)S.
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Remark 5.1 Before completing the proof of Theorem 5.1, a comparison with
the explicit result in [6] is in order. To avoid undue complications, we only
consider asymptotic bounds as h(y) — oo and r/h/(a) — co. Then, with the
optimal choice of x, the bound given by our Theorem 5.1 is

log ﬁ < (66 + 0(1)) plv (D¥)°R/(a) <log h’Za)) h(7).

On the other hand, from [6] we may show that

log < {20+ o) P ()@ (10w 1) h0)

lo/ =1,

which is better than Theorem 5.1. Thus the interest of Theorem 5.1 is more
in the method of proof than in the result itself.

Proof By (5.6) it suffices that r be so big that

5
r
RT Z C’h'(a) <10g W) s
that is p(logp)™ > C/k. Note that, with our value for C, this condition
takes care of (A5) as soon as k < 8(D)2.
On the other hand, we have the Liouville lower bound

o/ — 1], > (2H'(a")™",

while H'(o/)P» > e > 2, hence in any case we have o — 1|, > H'(a/)72Pv",
This shows that the conclusion of Theorem 5.1 is trivial as soon as k > 2D;.
Thus condition (A5) is of no consequence for the verification of Theorem 5.1,
completing the proof. [

In applications, condition (H1) is the most important. A direct compari-
son with Theorem 1 of [3] shows a big improvement in the absolute constant
of (H1) and a reduction in the power of the logarithmic term from 7 to 5.
The condition (H2) of [3] is now eliminated.

Theorem 5.2 Let K be a number field of degree d and v a place of K dividing
a rational prime p.

Let T be a finitely generated subgroup of K* and let &, ..., & be generators
of U'/tors. Let £ € T', A€ K* and k > 0 be such that

0< |1 — A&, < H'(AE)™.
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Define

t

C = 66p" (D))" and Q= (2p(C/r)) T] M (&)-

=1

Then we have
W(AE) < 16p7p(C/k) Q max (h'(A), 4p™Q) .

Proof The main idea is to find r coprime to p, and a € K not a root of
unity and v € I" such that A{ = ay™" = (a/)", without h(a) being too large
and with some control on the range of r. In [3], Lemma 6.2 uses a geometry
of numbers argument to show that if |1 — A¢|, < H(AE)™" we can do this
with

: 1/t
W (a) < W(A) + 71 (@-1 Hh/(@-)) ) (5.7)

and r in a range®

N
2(p" = 1)@

for any @ > (tD)'[[H (&) and N > 8p/* D (A)Q. By (5.8), this lower
bound for N implies r > 4.

Since r and p are coprime, we have |1 — A, = |1 — /|, for some choice
of the rth root «; note also that Lemma 6.2 of [3] also guarantees that « is
not a root of unity.

In what follows, we abbreviate p for p(C/k); note that we must have
Kk < 2D} (see the end of the proof of Theorem 5.1), hence p > 33D;.

Suppose now that

—-1<r<N+3, (5.8)

r > ph'(a). (5.9)
Then Theorem 5.1 yields
1—d|, > H'()™.
This contradicts

11—l =1 - Al < H(AS) ™™ = H(a/)™™

3 Lemma 6.2 in [3] has 21/2 in place of 2, but a more accurate evaluation of constants
appearing in Lemma 6.1 of [3] yields the cleaner bound stated here.
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unless H(a/) < H'(d), i.e. h(a') < 1/D; or equivalently
h(A¢&) < r/D3. (5.10)
We have shown that (5.9) implies the bound (5.10) for h(AE). It remains
to localize r by choosing () and N appropriately so as to satisfy the hypothesis
r > ph'(a) of Theorem 5.1.
We begin by choosing () as

t

Q= 2ot [T W&, (5.11)
i=1
which we may because 2pt > tD;.
We need to bound //(a) and for this we use (5.7). In view of (5.11), r > 4
and h(§) < h(AE) + W(A), we have

W (a) < W(A) + %r + ‘% h(E) < 2R (A) + 2—1,0 "t % hAS).  (512)

Now we choose N to be

N = ’VQ(pf“ ~1)Q (1 + max <8ph’(A), W)ﬂ .

Then (5.8) implies that

r > max (8ph'(A), V 16,0h(A§)>
hence (5.12) yields
1 1 1 1
ha) < —r+—r+-—r=-=-r,
(@) p 20 4p p
hence (5.9), and a fortiori (5.10), holds with this choice of N.
On the other hand, 7 < N + 3 and finally from (5.10) we have

h(A€) < (D)7 [2p = 1)Q (14 max (8pk'(4), v/160h(48)) ) | +3.
The first alternative for the maximum easily yields
h(Ag) < 16p" ph'(4)Q,
because ph'(A)Q is fairly large (use p > 33D to get ph/(A)Q > (66t)"),

hence the small corrections in going from 1 4+ max to max and in removing
the ceiling brackets and the constant 3 are easily absorbed in replacing pfv —1

by p/v.
The second alternative for the maximum yields
h(AS) < 207Q\/16ph(A¢)
and finally

h(A€) < 64p°7 pQ?,
completing the proof of Theorem 5.2. [



Enrico Bombieri and Paula B. Cohen 59

6 Appendix: from a private communication
by David Masser

In this appendix, we reproduce material from a letter of David Masser to the
first author dated 8th January 1984. These ideas of Masser inspired our §2
and are reproduced here with his permission.

“ ... My own method was based on zero estimates rather than heights,
using a ‘dividing out’ trick from transcendence. It gives the following general
result.

Theorem Suppose 0 is algebraic of degree d > 2 and of absolute height
H > 1. Fixz an integer e with

1<e<d

and real € with
O<e< .
e+1

Put
) + € do
g o =
e+1 7 (e+ 1)’

B =di+a, vy=1—(e+ 1.

Suppose the integers pg,qo > 1 satisfy

-
9—@ > 1.

A=(4H)"q°
do

Then the effective strict type of 6 is at most

—eylog | — 22|
log A

I didn’t try to improve the constant 4, although this could certainly be
done by using asymptotics for binomial coefficients.

The proof can be expressed in three lemmas, where ¢y, ¢, ... denote con-
stants depending only on d, H, . For P(z,y) in C|x,y] write as in Siegel’s
set-up

Pa,y) = % (g—x)lp(:g,y).
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Lemma 1 For each k > 1 there ezists a nonzero polynomial P(x,y) in
Zlzx,y], of degree at most Sk in x and at most e in y, with coefficients of
absolute value at most c1(4H)**, such that

P(6,0) =0, (0<I<k).
Furthermore P(z,y) is not divisible by any nonconstant element of Cly|.

Without the last sentence this is routine (I myself like to use the version
of Siegel’s Lemma proved as the Proposition (p. 32) of the enclosed offprint*).
Then one simply divides P(x,y) by its greatest monic factor in Cly|. Tt is
not hard to see that the resulting quotient also satisfies the conditions of the
lemma.

Lemma 2 Suppose k > e, and let £, n be arbitrary numbers with & not a
conjugate of 0. Then there exists | with

0<I<(e+1)ek+ed
such that
Bi(&,m) # 0.
Again the proof is essentially routine, on taking a minimal representation
P(z,y) = Ao(z)Bo(y) + - - - + Ap(z) By (y).

The point is that

is impossible by the last sentence of Lemma 1. This is the step usually done
by Gauss’s Lemma. It is interesting that the Dyson Lemma appears to give
only v/2ed — d in place of (e + 1)e multiplying k.

Lemma 3 Suppose k > ed/~ and let po, qo, D, q be integers with gy > 1, ¢ > 1.
Then we have
vk—ed
+ ‘0 - I—)‘ .
q

4 M. Anderson, D. W. Masser, Lower bounds for heights on elliptic curves, Math. Z.
174 (1980) 23-34

0% g < co(4H)* (‘ _
qo
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This follows from a straightforward comparison of estimates for F;(22, =)

with [ chosen as in Lemma 2.
The Theorem now follows by taking k asymptotic to elogq/log A. The
usual ineffective arguments give any exponent

A > +e
e+1
as in Siegel. The optimal choice e = 10, ¢ = ‘/?1_ L gives any exponent
5%)
A> = <4+\/§) = 21.270. ..

for the real root 8(m,d) of z¢ — maz® ! + 1 = 0 provided d > dy(\) and
m > mg(d).
I briefly looked at a similar approach in the Gelfond-Dyson set-up, with

a fixed integer ¢ and derivatives (9/02)'(0/0y)* P(z,y) for

I s

-+-<1

F
But even if the analogous zero estimate could be made to work, it seems as if
t =1 (i.e. Siegel) gives the best results for 6(m,d). So I didn’t try too hard
with this.”
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A Diophantine system

Andrew Bremner

Dedicated to Peter Swinnerton-Dyer on
the occasion of his seventy-fifth birthday

This note concerns the Diophantine system

vty +r; = Yyt
s+ w =y + Y+ (1)
i+ ay+ay = yi+ys+ys

which represents a surface of degree 24. The system is of interest in that
Palama [7] in 1951 showed that the only real points on (1) in the positive
quadrant (x; > 0, y; > 0 for i« = 1,2,3) are trivial points, that is, points
where (1, 2, 23) is a permutation of (y1,y2, y3). Geometrically, the only real
points on (1) in the positive quadrant lie upon a finite number of planes.
Choudhry [2] discovers the nontrivial rational point (which we also refer to
as a nontrivial solution)

(21, T2, 3, Y1, Yo, y3) = (358, —815,1224; —776, 1233, —410),

and we observe that this point also satisfies 1 + 9 + y1 + yo = 0. In this
note, we investigate the section of the surface (1) cut by the plane

T+ 22 = t(y1 + ¥2) (2)

for t = £1. There are only finitely many nontrivial points on the section with
t = 1, but infinitely many nontrivial points on the section with ¢t = —1.
First, make the substitution

ry=am+bn, y1=am—bhn
To = aom +bon, Yo = asm — ban (3)
r3 = azm +bzn,  yz=azm —bzn

where mn # 0, so that (2) above becomes

m(t — 1)(&1 + CLQ) = ’I’L(t + 1)([)1 + bg)

63
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Casel:t=1

Then by = —by, and substituting (3) into (1) gives:

(Zlbl — ale + a3b3 =
3(a3by — a3by + a3bs)m® +bin®> = 0 (4)

(a3by — azby + asbs)m* + (a1b] — axb? + aszby)n® = 0.

Nontrivial solutions demand a; # as, ag # 0. Eliminating m, n in (4) and
using bs = (—ay + a2)by /az gives

4 4 2 2
ai — alay — ayal + a3 — 3aias + 3aiazas + 3ajasas

— 3aja3 + 2aja3 — dayazal + 2a3a3 + 3ayay + 3azai — 3az = 0.

This quartic curve is singular at the point (a1, a2,a3) = (1,1,0), and has
genus 2. Put

to give
3utv? — 3(v? + 20*w — 2w?)u + (v* — w?) (v + 3vw + 3w?) = 0. (5)
The discriminant (as function of u) being square implies
—3(0° — 4v*w? + 120%w* — 120°) = square. (6)

This latter curve of genus 2 has of course only finitely many rational points.
Its Jacobian is isogenous to the product of the two elliptic curves

B —3(V3—4Vi4+12V —12) = S2
Ey: —3(1—4W + 12W2 — 12W3) = S§2,

both of which are of rank 1 (with generators (0,6) and (1,3) respectively).
Accordingly, Chabauty’s method (see for example Coleman [3]) for determin-
ing the rational points on (6) does not apply. It is possible that methods
of Flynn and Wetherell [6] may be effective, but we have not pursued the
calculation; see also Bruin and Elkies [1]. In any event, there are only finitely
many solutions of the system (1) satisfying =1 + 2 = y; + y2, and their deter-
mination is afforded by finding all rational points on the curve (6). A modest
computer search finds only the points (u,v,w) = (1,0,0), (1,0,2), (0,1,1),
(1,1,1) on (5), corresponding to trivial solutions of (1).
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Case II: t = —1

Now a; + as = 0, and

a1b1 — a1b2 + a3b3 = 0,
3(a3by + aiby + aibs)m® + (b3 + b3 + b3)n®> = 0, (7)
(a:{’bl — ai’bg + agbg)m2 + (alb‘z’ — albg’ + ozg,bg)n2 =

Nontrivial solutions demand by # by, az # 0. Eliminating m, n at (7) and
using bs = (—by + ba)aq /a3 gives

ay(by — bz)(aiby — asby — aibs — azbo) P(ay, as, by, by) =0,
where
P(a1,as, by, by) = aib? — 2a3asb? + 2a,a3b? — azh? — 2aibyb,
— 8ata3biby + asbiby + aibi + 2a’azbi — 2a1a3bi — azba.

Consequently, either a; = 0, or by = by, or (a; — az)by = (a1 + az)bs, all of
which lead to trivial solutions of the original system, or

(a1 — a3)*(ay + a3)b? — (2a7 + 8ata3 — a3)biby + (a1 — as)(ay + as)®v3 = 0.

The discriminant of the latter is

3a3(2a3 + a3)*(4a® — a3)
which accordingly is square precisely when

4a? — a3 = 3 x (square).
Put

a; =3u> +v* and a3 = 6u’ — 207,

so that (without loss of generality, on changing the sign of v if necessary)

b (u—v)(3u+v)?
bo 3(3u —v)(u+wv)3

and

by 2(3u? + v?)(3u? + 2uv + v?)
by 3(3u —v)(u+v)3

Then from (7),

—9(3u — v)?(u 4+ v)5m? + b3 (9u* — 24udv — 26uv? — Suv® + vh)n? = 0,
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that is,
U? =V*—8V3 —26V% — 24V 49, (8)

where

3(3u — v)(u +v)3

V =v/u, U= b2 m/n.

A Weierstrass model for (8) is
y? = 2® + 2% — 4o + 32, 9)

and using the APECS program [4] of Ian Connell, or the tables of Cremona
([5]), where (9) is numbered as the curve 552E1, we discover that (8) is of
rank 1, with generator P(V,U) = (—9/4,—111/16). Accordingly, we can
construct infinitely many rational points (equivalently, integer points) on (1).
Indeed, from

a1 = 3u® + v, as = —3u? — v, as = 6u® — 20,

by = —(u—v)(3u+v)?, by = 3(3u — v)(u +v)®
and by = 2(3u® + v?)(3u® + 2uv + v?),

with
1
V2=V —8V3 —26V2—24V +9, V=2 U=—m/n,
u

we obtain

v, = (3+VAHU —27+18VE4+8V3 + V4,

T —(34+ VAU +9+ 24V 4+ 18V2 — 3V4,

3 = 23 —VHU + 18+ 12V + 12V? +4V? + 2V*,

o (3+ VAU +27 - 18V —8V3 — V4 (10)
Vs —(3+ VAU — 9 — 24V — 18V? 4 3V,

ys = 2(3—VHU — 18 — 12V — 12V2 —4V? — 2V*,

The point P(V,U) = (—9/4, —111/16) pulls back to the solution
(—815, 358, 1224; —776, 1233, —410),
and the point 2P(V,U) = (—148/33,29219/1089) to the solution

(378382959, —931219912, —156845590; 357088490, 195748463, —932263416).
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représentées par une norme

J.-L. Colliot-Théléne, D. Harari et A. N. Skorobogatov

a Peter Swinnerton-Dyer en signe d’admiration

Brauer group of a smooth and proper model of the k-variety given
by P(t) = Normpgy(z), where P(t) is a polynomial, and Normpg /x(z)
is the norm form defined by a finite field extension K/k, with &k an
essentially arbitrary field. Under some additional hypotheses we com-
pute this group explicitly. On the other hand, when &k is the field of
rational numbers, and P(t) is a product of arbitrary powers of two lin-
ear factors, we prove that the Brauer—-Manin obstruction to the Hasse
principle and weak approximation is the only one.

1 1ntroauction

CUet article est consacre a l'etude des points rationnels de varietes definies,
sur un corps de nombres k, par une équation

F(T) = N/pZ), (L)

ou _l—\l/) < h}|_l/J €L ull PulyluLe da ulle vallavle, IX/Ii} UL ©XULCIISIOLNL LLLIIE Ue
corps et Nk/i(2), pour z variable dans K, est la forme normique associée a
cette extension. Pour I'histoire de ce probléme, on pourra consulter [CTPest].

Lorsque k est le corps Q des nombres rationnels, Heath-Brown et I'un des
auteurs [HBSk] ont démontré que pour le polynome P(t) = at®(t — 1)%, ol
(a,b) = 1 et a € k*, Pobstruction de Brauer—Manin est la seule obstruction
au principe de Hasse et & "approximation faible pour tout modele propre et
lisse X¢ de (1). Une variante de leur démonstration est donnée dans [CTPest].

Le but de cet article est double. D’une part on étudie, sur un corps k&
essentiellement arbitraire, et pour un polynéme P(t) quelconque, le groupe
de Brauer Br(X¢). D’autre part, sur £k = Q, on généralise le résultat de [HBSK|
au cas P(t) = at®(t — 1)° € Q[t] avec a et b quelconques.
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qu’il semble difficile, pour une extension K/k arbitraire, d’écrire un modele
projectif et lisse X° de la k-variété définie par (1); nous calculons le groupe
de Brauer Br(X) d’un modele lisse X non propre, mais assez gros, de (1). Ce
calcul est fait au paragraphe 2, sur un corps k de caractéristique zéro, et pour
K/k et P(t) quelconques. Les principaux résultats sont la proposition 2.3 et
la proposition 2.5. Sous des hypothéses supplémentaires convenables, on en
tire des conséquences sur le groupe de Brauer de X¢ (corollaires 2.6 et 2.7,
propositions 2.11 et 2.12).

Au paragraphe 3, dans le cas P(t) = «at®(t — 1)°, nous appliquons la
méthode de la “descente ouverte” ([CTSk]) a la variété X introduite au para-
graphe 2. Dans [HBSK] et [CTPest] cette méthode avait été appliquée & 1'ou-
vert de lissité de la variété définie par (1), ouvert qui est strictement contenu
dans la variété X ici considérée. C’est ce changement de modele qui explique
les progres faits dans le présent article (théoreme 3.1 et corollaire 3.2).

d ALV UL U 51 Uuy\/o CiLw Asiaauau i

A 1 teih G e RS W A A VA A SR DU K8 RS A e & e e e e
On note T := Gal(k/k). On note H:(T'y, M) ou plus simplement Hi(k, M)
les groupes de cohomologie du groupe profini I'y a valeurs dans un I'y-module
continu discret M.

On supposera le lecteur familier avec la théorie des k-tores algébriques
([CTSal], §2; [Vosk]).

Soit X une k-variété, c’est-a-dire un k-schéma séparé de type fini. On
note X = X x; k, puis k[X]* = H°(X, O%) le groupe des unités de X et
E[X]* = H°(X,0%) celui de X. On note Pic(X) = Hy, (X, 0%) le groupe
de Picard de X. Le théoréme 90 de Hilbert revu par Grothendieck identifie
ce groupe & Hi (X, G,,).

Dans cet article, la notation Br(X) est utilisée pour le groupe de Brauer
cohomologique HZ (X, G,,) d'une k-variété X. Rappelons aussi les notations
usuelles

LoLyg\<2 j T Lirjasagivy (SRR CE N F] ASL |42 T ANLL |asL 43 g B RCE Y D

La suite spectrale de Leray E}? = HP(k, HL(X,Gyp)) = HZ(X,Gy,)
donne naissance a la suite exacte (cf. [CTSa3], (1.5.0))

H2(k, K[X]") = Bry(X) — H'(k, Pic(X)) — H3(k, B[X]").

Si on a k = E[X]* (cest par exemple le cas pour X propre, réduite, et
géométriquement connexe), alors cette suite s’écrit

Br(k) — Bry(X) — H'(k, Pic(X)) — H3(k, k),
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0 — Bro(X) — Bry(X) — H'(k, Pic(X)) — H3(k, k).

Notons que H?(k, k) = 0 si k est un corps de nombres ([CF], 7.11.4). Par
ailleurs la fleche H'(k,Pic(X)) — H3(k,k ) est nulle si X (k) # 0; en effet
tout k-point de X définit une rétraction de la fleche

x gsuy e g iy Py N mmap\A ) LY

B R e TR T S g

E3% sont nulles.

Soit P(t) un polynéme. Ecrivons-le P(t) = a [, pi(t)* avec o € k* et
avec les polynémes p;(t) irréductibles, unitaires et distincts deux a deux. On
note d; le degré de p;(t) et s = >_. a;d; le degré de P. On suppose [, pi(t)
de degré au moins égal a 2. Soit K C K C k une extension de degré n, et
Nk K* — k* 'application définie par la norme. Soit wy, . ..,w, une k-base
de K. On note Ng/x(z) la forme normique associée, ot z = zjw; + - - - + 2wy,
est une K-variable.

Soit V. APt ~ A} xj Rg/x(A%) louvert de lissité de Uhypersurface
affine définie par I’équation (1).

La projection (¢,z) + ¢ définit un morphisme surjectif p: V. — Aj.
Soit Uy C AL Uouvert donné par P(t) # 0, et soit U = p~*(Up) C V. La
k-variété U est la variété affine définie par le systeme P(t) = Nk (z) # 0. La
restriction de p & U est un Up-torseur sous le tore normique T' = R}(/k(Gm),
lequel est déployé par le passage de k & k. Comme le groupe de Picard de Uy
est nul, il existe un isomorphisme de k-variétés U =~ Uy x5 T =~ Uy x G271,
11 en résulte que Pic(T) = 0 et que le quotient K[U]* /%" est engendré par les
facteurs linéaires de P(t) sur k et les caractéres du tore 7.

Soit T° une compactification lisse équivariante de T’ (voir [CTHaSk]). Le
produit contracté U xT T¢ est une compactification partielle de U, propre
et lisse sur Up. Soit! X la k-variété lisse obtenue par recollement de V' avec
U xT T¢ le long de U. Soit m: X — Al le morphisme naturel, et 7 = 7 X, k.
Comme toute fibre de 7 est contenue soit dans V soit dans U x7 T¢, et que
chacune des k-variétés V et U xT T° est séparée, le k-schéma de type fini X
est séparé. C’est donc une k-variété.

La fibre générique X, de 7 est projective et géométriquement inteégre sur
k(t). Une fonction inversible sur X provient donc de k(¢)*. Si un élément de

A ULAL LG UMD UL UUULUIL YU WUV U LU UL DUV UL L W WY UL U GUU VAL UV L ISR

équivariante de T, on pourrait se contenter de l'existence d’une k-variété lisse et pro-
pre sur U jouant le role de U xT T'¢, ce qui est fourni par le théoréme de Hironaka. Il faut
alors modifier le diagramme de la proposition 2.2.
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E[X]* =% (on a en fait I'énoncé plus précis k[V]* =% ).

Soit X € une k-compactification lisse de X telle que 7 s’étende & un mor-
phisme (encore noté 7) X¢ — P,. L'existence de X¢ découle du théoréme
de Hironaka. Le module galoisien Divy\(X) des diviseurs de X & sup-

port hors de U est la somme directe du module des diviseurs “verticaux”

Div, := DiVV\ﬁ(V), librement engendré par les composantes irréductibles

des fibres dégénérées, et du module Divy, des diviseurs de U x” T¢ 3 support
hors de U, c’est-a-dire des diviseurs “horizontaux”.

Le lemme suivant est sans doute bien connu (cf. [Sa], §6.b), mais nous ne
I’avons pas trouvé explicitement dans la littérature.

T° une compactification équivariante de T et E¢ le produit contracté E xT T¢.
Soit K/k une extension galoisienne de corps, de groupe de Galois G, déployant
le k-tore T. Alors il existe un isomorphisme naturel de suites ezxactes de
G-modules

0 — T  —— Divpg\(Tg) — Pie(Tg) — 0
| L |
L 44 ‘JK\‘JA\ mn ./ N mn 7/

AU LIINALI UL AU L L A/LL W 1 DULUL LALU UL UL WU Tl vU UL L

L 4 1 il /G Sl $ SN I 7 \ I/ \ 7

On peut écrire la suite exacte analogue pour Ey gy := E X3 kE(E), ou k(E) est
le corps des fonctions de E, et 'extension galoisienne K (FE)/k(FE) (de groupe
G) au lieu de K/k :

0 — K(E)[Eyg|"/K(E)" — Divge

ou EK(E) = F x; K(E), E;((E) = E° x; K(E) La projection Ek'(E) — F
induit un isomorphisme galoisien de la premiére de ces suites dans la seconde,
car k est algébriquement clos dans k(E).

Pour E =T, il est bien connu que K[T]*/K* = T. Pour les mémes raisons
que ci-dessus, la projection Tygy — T induit un isomorphisme galoisien de la
premiere suite horizontale dans 1’énoncé du lemme avec la suite

K(E)\TK(E) (TIC('(E)) — PiC(TIc((E)) — 0.

11 suffit alors d’observer que le point générique de E définit un isomor-
phisme de T g)-espaces principaux homogenes Tygy ~ Eggy, qui induit un
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entre la suite pour Ty gy et celle pour Eygy. [

Notons Z[K/k] le T'y-module induit Z[I'y/Tk]. Au polynéme P(t) nous
attachons le ['y-module de permutation Zp, qui est la somme directe des
Z[L;/k|, ot L; = k[t]/p;(t). Il est évident que le module k[Uy]*/k , librement
engendré en tant que groupe abélien par les classes des facteurs linéaires de
P(t) sur k, est isomorphe 3 Zp. D’autre part le module galoisien Div, est
librement engendré par les composantes irréductibles du diviseur défini par
P(t) = Ngsk(z) = 0 sur V, il est donc isomorphe & Z[K/k] ® Zp. Quant au
module galoisien Divy, on voit en utilisant le lemme 2.1 qu’il est isomorphe
au module Divﬁ\f(ﬁ) (voir la fin de la démonstration de la proposition
suivante).

L’énoncé suivant permet de contréler le I'y-module Pic(X) :

Proposition 2.2 1l existe un diagramme commutatif de U'r-modules, dont les
lignes et les colonnes sont exactes

U U U
\ \ 3
) )
0 - Ek[U/E — (ZIK/k|®Zp)®Div, — Pic(X) — 0 (2
N ) )
0 — T — Divy, — Pic(T¢) — 0
\J \J \J
0 0 0

LICIIOIIdLIALLIVIL LXPLIJUOILLS U aDOLIU COLLLLIEINL CC ULdRLALLLLIIC €51 COLLSLIULL.
La suite exacte horizontale supérieure est obtenue par tensorisation par Zp
de la suite exacte naturelle

U—> & — LN jK]— 1 — U,

Ou la NeCne 4 — 4|4y / K£] €11VOIE 1 SUr la Norine lVK/k (SOIIIIIE Aes CLEINCILS ae
I'x/Tk, i.e. des plongements de K dans k ). Dans la suite exacte horizontale
médiane, la fleche kK[U]*/k — (Z[K/k] ® Zp) & Div,, associe & une fonction
son diviseur sur X.

La fleche Z[K/k|Q Zp — (Z[K/k] Q Zp) & Divy, est simplement la fleche
d’inclusion via le premier facteur. La fleche Zp — k[U]*/k est la fleche
naturelle k[Up]*/k~ — k[U]*/k . Le carré en haut & gauche commute, comme
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Ceci définit la flache T @ Zp — Pic(X).

Les fleches de la suite horizontale médiane dans la suite horizontale inféri-
eure sont définies par la restriction de X a la fibre générique X,, de m. Cette
restriction tombe a priori dans la suite de I'y-modules (€) relative & 'ex-
tension k(t)/k(t), & l'espace principal homogene U, du k(t)-tore Ty, et &
X, =U, xTn T;. D’apres le lemme 2.1, cette suite est isomorphe a la suite
de T'y-modules (€) relative & 'extension k(t)/k(t), au k(t)-tore Ty et a
Ty Mais les arguments du lemme 2.1 montrent aussi que cette suite de
I'tr-modules est isomorphe (par image réciproque de k a k(t)) a la suite de
[';-modules (£) relative & 'extension k/k, au k-tore T et & T¢. [

rroposition 2.3 Le groupe Pic(X ) est sans torsion, et Br(AX) est nul.

Démonstration Comme Pic(7") est libre de type fini ([CTSa3], Cor. 2.A.2,
p. 461), la colonne de droite du diagramme montre que Pic(X) est sans
torsion. Pour le deuxiéme énoncé, notons que puisque X est une k-variété
lisse, Br(X) s'injecte dans le groupe de Brauer de la fibre générique Xz, de
7 X o A%. Mais X, est une variété propre, lisse et rationnelle sur k(1)
Comme le groupe de Brauer est, en caractéristique zéro, un invariant bira-
tionnel des variétés projectives et lisses ([Gr], Cor. 7.5) et que le groupe de
Brauer de 1’espace projectif sur un corps coincide avec le groupe de Brauer du
corps de base (énoncé facile & obtenir en caractéristique zéro, par réduction
au cas de la droite affine), on a Br(Xg,)) = Br(k(t)). Ce dernier groupe est
trivial, comme il résulte du théoréme de Tsen. [

Dans le diagramme (2), on dispose d’une section évidente de la projection
(LK /K| Lp) & U1V, — D1vy, .

/TLL UuclLiiy \Vl(]: 1 CULLLLLIULGLIYILE UU LALLT UT ULlULLT UU Ulaglallllllc \L}, Yyul

donne la fleche Divj, — Pic(X)) un morphisme de suites exactes

v ’ £z ’ 171v h ’ L J.b\.l. } ’ v

1l L I (3)
0 - T®Zp — Pic(X) — PicTe) — 0

DUR £V 1L A ] S8 VLML /U DU U PO iy s pausigyT
ments de L; dans k. Soit x € 7, image de ¥ € Z[K/k| par la surjection
canonique. Si on ajoute & x € Divy, 'élément de Div, = Z[K/k] ® Zp défini
par X ® (3 a;V;), on obtient le diviseur de la fonction x (inversible sur U). 11
en résulte que la fleche T — T ® Zp dans le diagramme (3) est induite, par
tensorisation par T, par la fleche jp: Z — Zp envoyant 1 sur — > 7", a;IV;.
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seulement si les entiers a;d; sont premiers entre eux dans leur ensemble.
Pour un I'y-module M on définit le groupe

P N | I I S NS B R N O b B S B

I - - - o

['x-module de permutation, ou bien si M est déployé par une extension K/k
de groupe de Galois métacyclique (i.e. dont tous les sous-groupes de Sylow
sont cycliques), alors IIT2 (M) = 0.

On sait ([Vosk], Chap. 2, §4.6; [CTSal], preuve de la Prop. 6) que le mo-
dule galoisien Pic(ﬁ) est H~'-trivial. En particulier, pour tout sous-groupe
procyclique {g) C Ik, on a l'égalité H'({(g), Pic(T¢)) = 0 via la 2-périodicité
de la cohomologie d'un groupe (fini) cyclique ([CF], Chap. IV, §8, theorem 5).
De la suite exacte inférieure du diagramme (2) on déduit alors classiquement
(ICTSa2], Prop. 9.5) lisomorphisme H' (k, Pic(T¢)) ~ IIT2 (T).

12 (M) p = Ker[jp.: III2 (M) — 12 (M ® Zp)).

Proposition 2.5 Soit X/k comme ci-dessus.

a) Il y a une suite exacte naturelle
U— 1 \K,1 @ 4p)]ipdl \K, 1) — [ \K,FIC(A)) — L_\Ljp — U.

b) Les éléments de Br(X) dont [“mage dans H*'(k,P1c(X)) provient de

H'(k, f@Zp) sont précisément les éléments du groupe de Brauer verti-
cal de X par rapport a la projection X — A}c, c’est-a-dire les éléments
de Br(X) dont la restriction d la fibre générique X, provient de Br(k(?)).

exacte

LivgL CEL \dvy L S b)) FoLd \Juy L LU\ )y /o4d (\Jvy L a2 gy

— H*(k, T @ Zp).

D’autre part, de la suite supérieure on déduit, comme on a vu, un iso-
morphisme H'(k, Pic(T¢)) ~ III2(T), et du calcul de la flecche jp: T — TQZp
dans ce diagramme, et de la nullité de H'(k, Div},), on tire la suite exacte an-
noncée en a).
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On a vu plus haut £ = k[X]* et Br(X) = 0, donc Br;(X) = Br(X). On
a donc la suite exacte

Br(k) — Br(X) — H'(k,Pic(X)) — H3(k, k).

Pour la fibre générique X, = Xy, on a Br(Xg,) = Br(k(t)) = 0, et
la suite spectrale de Hochschild-Serre pour la projection XE(t) — Xy et le
faisceau étale G,, donne naissance a la suite exacte

Br(k(t)) — Br(Xwy) — H'(k, Pic(Xgy)) — H?(k, k(t)7)

et la premiere sulte s'envole de Iagon naturelle dans la seconde.
La fleche H'(k, Pic(X)) — H'(k, Pic(X5,)) s'identifie & la fleche

H*(k,P1c(X)) = H"(k, P1c(L ),

aont le noyau €st precisement l'image de H*(k, 1 & Lp). UECl €tabllt le poing
b). O

DNllaryjuce Wil poul €l lall UCCLLIC PLCCLSCLLICLIL 1OS CLCLLICLILS UC DLI.A ) 4OlLLL

la classe dans H'(k, Pic(X)) provient de H'(k,T ® Zp). Ce dernier groupe
est naturellement isomorphe au groupe

i=1
DOolt U; la classe de t dans L; = /{?[tj/pz (t) SO1t

{xi}i=1,..m € P Ker[H"(L;,Q/Z) — H'(L; ®; K, Q/Z)].

i=1

Un peut alors considérer

A =" Coresym (t — 0, xa) € Br(k(1)),

i=1

et véritier directement que la restriction de A au corps des tonctions de X est
non ramifiée sur X.

P \ 7

est vertical par rapport & X — Aj, et il en est de méme, a fortiori, du groupe
de Brauer Br(X°®) par rapport & X¢ — Py :

a) le groupe de Brauer de T® est réduit au groupe de Brauer de k;

b) le tore T = R}(/ka est un facteur direct d’un k-tore k-rationnel;
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groupes de Sylow cycliques (ce qui est clairement le cas si lextension
K/k est cyclique) ;

d) Vextension K/k est de degré premier;

e) le p.g.c.d. des a;.d; est égal & 1 (ce qui est clairement le cas si 'un des
p; est de degré d; =1 et de multiplicité a; = 1).

e Camm s am Ve ey A aa e S T I el A R e F e R ey B I R

alors T satisfait b) ([CTSal], Prop. 2 et Prop. 6, et [CTSa2], Prop. 9.1). Si T
satisfait b), il satisfait a) ([CTSal], Prop. 6). Sous a), on a H'(k, Pic(T¢)) =0
(voir le début du pagraphe 2, et observer que T°(k) contient T(k) et donc est
non vide). Ainsi ([CTSa2], Prop. 9.5) III2(T) = 0. L’hypothése ¢) implique
que la fleche jp: Z — Zp admet une rétraction Galois—équivariante.AOn a
alors 112 (M) p = 0 pour tout module galoisien M, en particulier pour 7. O

neidrgque  oSupposolls que & €sL Ull COrps ae Nolpres, €u aulneuvLons 1 iy-
pothese de Schinzel (cf. [CTSD], §4). Lorsque K/k est cyclique, on sait alors
(extension due & Serre d’un ancien résultat de Sansuc et de I'un des auteurs,
voir [CTSD], Th. 4.2) que l'obstruction de Brauer-Manin au principe de Hasse
et & 'approximation faible est la seule obstruction pour X¢ Mais pour K/k
plus général, on ne sait le faire sous aucune des hypotheses a), b), ¢), d) ci-
dessus, bien que chacune de ces hypothéses implique la validité du principe
de Hasse et de I'approximation faible pour les fibres lisses de X¢ — P;.

— e —mmm—— e v e e = (Mg Tmv sie o wvamer e gawivaoaes b vesvseues s v

k dont les multiplicités sont premiéres entre elles dans leur ensemble, et que
Pextension K/k ne contient pas de sous-extension cyclique non triviale. Alors
le groupe de Brauer de X est réduit a ’image Bro(X) de Br(k). A fortiori le
groupe de Brauer de X°¢ est-il réduit ¢ I’image Bro(X€) de Br(k).

Démonstration L’hypothése sur les multiplicités implique T (T)p = 0
(corollaire précédent, cas e)). Sous I'hypothese faite sur K/k, le noyau de la
restriction H'(k,Q/Z) — H'(K,Q/Z) est trivial, soit encore H'(k, T) = 0.
Comme P est déployé, on a alors

H' (k,T®Zp)=0.
On a donc H'(k,Pic(X)) =0, et donc Br(X) = Bro(X). O
Exemple Supposons l'extension K/k de degré premier, non cyclique, et

le polynéme P(t) déployé. Alors, sans hypotheése sur les a;, on a 1'égalité
Bry(X) = Br(X) et donc Bry(X¢) = Br(X¢. On a en effet dans ce cas
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H'(k,T) = 0, donc H'(k,T ® Zp) = 0 et par ailleurs T est un facteur
direct d’un k-tore k-rationnel ([CTSa2], Prop. 9.1), donc H'(k, Pic(T¢)) =0
([CTSal], Prop. 6). Ainsi H'(k, Pic(X)) = 0.

Il serait souhaitable de décrire le sous-groupe Br(X¢) C Br(X). Nous don-
nons quelques résultats concernant la partie verticale, par rapport au mor-
phisme 7: X¢ — P}, de Br(X°).

Notons F' = k(U) = k(X°®) le corps des fonctions de X¢. Etant donné
A € Br(k(t)), on note Ar son image dans Br(F') par Uinclusion k(t) C F
induite par X¢ — Pj.

Proposition 2.8 Supposons que le polynome P(t), de degré s, est de la forme
1°Q(t) avec a > 0 et Q(0) # 0. Soit x € Ker[H'(k,Q/Z) — H'(K,Q/Z)].

I définit un élément deVBr(k(Xc)) non m;m'ﬁé sur l’imaé;e‘ récz’proq\ue de
A} dans X°.

b) Pour tout polynome R(t) € k[t], la classe de l’algébre s(R(t), x) définit
un élément de Br(k(X°)) qui est non ramifié auz points de codimension
1 de X¢ situés au-dessus du point a Uinfini de Py.

Démonstration Rappelons tout d’abord la notation employée. Soient K
un corps, K, une cloture séparablede K, p € K* et £ € H'(Gal(K,/K), Q/7Z).
On note (p, &) € Br(K) le cup-produit de p € K* = H°(Gal(K,/K), K}) avec
le bord 6(¢) € H?(Gal(K,/K),Z), le bord ¢ étant pris pour la suite exacte
évidente 0 > Z - Q - Q/Z — 0.

Pour établir la proposition, il suffit de vérifier que la restriction de (¢%, x)
a I = k(X,) est non ramifiée au-dessus du point O défini par £t = 0 dans Aj.
L’égalité t*Q(t) = Nk/x(z) € F implique 'égalité

tion. Par hypo\th(:a‘slew,\lélrlélstrictiarllw)\(;;(vi_é/ x a K “est nulle. Ainsi
(t*Q(t), x)r = 0 € Br(F)

et (1% x) = a(t,x)r = —(Q(t), x)F est clairement non ramifié aux points de
X*¢ au-dessus de O. Soit u = 1/t. L'égalité P(t) = Nk/x(z) dans F' donne une
égalité H(u) = u*Nk/i(z), avec H € k[u| satisfaisant H(0) # 0. Procédant
comme ci-dessus, on voit que pour tout x € Ker[H'(k,Q/Z) — H'(K,Q/Z)],
et tout R(t) € k[t], la classe de I’algébre s(R(t), x) est non ramifiée aux points
de codimension 1 de X° situés au-dessus du point & l'infini (v = 0) de P. O
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t*Q(t) avec a > 0 et Q(0) # 0. Soit x € H'(k,Q/Z) quelconque. Supposons
que (t,x)r € Br(F) est non ramifié auz points de X¢ au-dessus de t = 0.
Alors :

a) x € Ker[H'(k,Q/Z) — H'(K,Q/Z)).
b) Pour r =n/(n,a), on aryx =0 dans H'(k,Q/Z).

L/CILULIALLALIVLL 1 UUL 1 GLUULLE @), 1 SULLL UG LULLPALTL 16 LERIUU US (1) X J
en le point ¢ = 0 de A} et le résidu de (¢, x)r au point générique du diviseur
de X défini par t = 0; en effet la cloture algébrique de &k dans le corps des
fonctions de la k-variété d’équation Ng/x(z) = 0 est K (pour les propriétés
bien connues des résidus, on renvoie au §1 de [CTSD]). Considérons 1'énoncé
b). Soit m = a/(n, a). Effectuons le changement de base t = v". On obtient
I'équation v"™Q(v") = Ng/i(z). Le changement de variables z' = z/v™ donne
une équivalence birationnelle entre la variété d’équation v"™Q(v") = N x(2)
et celle d’équation Q(v") = Ng/x(2'), changement qui respecte la projec-
tion sur la droite affine Spec(k[v]). L’hypotheése implique que (v”, x)r, ol
F' désigne le corps des fonctions de la nouvelle variété, est non ramifié au-
dessus de v = 0. Mais la fibre de cette nouvelle fibration au-dessus du point
v = 0 est géométriquement integre. Ceci implique ([CTSD], Prop. 1.1.1) que
(v",x) € Br(k(v)) est non ramifié en v = 0, et ceci équivaut a la condition
rx =0¢€ H'(k,Q/Z). O

DU UL UL & V) p uveiy 5 () — W] L1l Vi) s sYee wp o vy saiongun
e; dans k et e; # e; pour ¢ # j. On a alors s = > a;. La structure de
Br(k(t)), le fait que les fibres de X — A} au-dessus des points de Uy soient
géométriquement integres, et la proposition 2.9 ci-dessus impliquent ([CTSD],
Prop. 1.1.1) que tout élément vertical de Br(X) C Br(F) est, a addition
pres d'un élément de Br(k), 'image réciproque d’un élément de la forme
A = 3" (t — e, xi), avec chaque x; € Ker[H'(k,Q/Z) — H'(K,Q/Z)),
satisfaisant de plus (n/(n,a;))x; = 0.

Lonsiaerons le cas ou tous les a; SONt egaux a 1, 1.e. F(I) = o] ;T — ;)
avec e; # e; pour ¢ # j. Alors m = s. Dans ce cas, d’aprés le corollaire
2.6, tout le groupe de Brauer de X, et donc de X¢, est vertical. D’apres la
proposition 2.8, tout élément de la forme 4 = )", (t—e;, x;) € Br(k(t)), avec
chaque caractere x; € Ker[H'(k,Q/Z) — H'(K,Q/Z)], définit un élément
Ar € Br(F) = Br(k(X®)) non ramifié sur 'ouvert de X¢ image réciproque
de A;. Au-dessus du point & U'infini v = 0, la méme proposition assure que
sAr est non ramifié. Comme par ailleurs nx; = 0 pour tout ¢, on voit que
(n, s)Ap est non ramifié sur X° Au voisinage du point u = 0, 'algébre A
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ramifiée, la proposition 2.9 implique (n/(n, s)).(3_,; x:) = 0.

Notons le cas particulier : si s et n sont premiers entre eux, alors les
éléments de Br(X¢) sont les sommes d’un élément de Br(k) et d’éléments
(t — e, xi)p, avec x; € Ker[H'(k, Q/Z) — H'(K,Q/Z)].

Nous avons donc établi la :

Proposition 2.10 Soit P(t) = a[[;_,(t — e;) séparable et déployé.

7 L di= N v ey

avec p € Br(k) et chaque x; € Ker[H'(k,Q/Z) — H'Y(K,Q/Z)], avec
(n/(n, ). xi) = 0.

b) Tout élément de Br(k(X€)) de la forme pp + > i (t — e, xi)r avec
p € Br(k) et chaque x; € Ker[H' (k,Q/Z) — H'(K,Q/Z)] est non
ramifié au-dessus de A et il est non ramifié sur tout X si s est premier
an=[K:k|.

Considérons maintenant le cas ou P(t) est de la forme P(t) = at*(t —1)°,

avec (a,b) = 1. Cette derniere hypothese assure (corollaire 2.6) que Br(X)
est vertical par rapport & X — A}, et donc que Br(X¢) est vertical par
rapport & X¢ — P,. Soient ¢ et d tels que que ad — be = 1. D’aprés la
proposition 2.9, tout élément (vertical) de Br(X¢) provient, & addition pres
d’un élément de Br(k), d’un élément de la forme (¢, x) + (t — 1, %) € Br(k(t)),
avec X, dans Ker[H'(k,Q/Z) — H'(K,Q/Z)]. Le sous-groupe de k(¢)*
engendré par ¢ et (t—1) coincide avec le sous-groupe engendré par t*(t—1)% et
t¢(t—1)%. Ainsi tout élément de Br(X¢) provient, & addition prés d'un élément
de Br(k), d’un élément de la forme (¢2(t — 1), x) + (t°(t — 1)¢,4) € Br(k(t)).
De l'égalité at®(t — 1)® = Ngyi(z) dans F' et de la formule de projection
on déduit que (t*(t — 1)°,7)F est dans l'image de Br(k) pour tout v dans
le groupe Ker[H'(k,Q/Z) — H'(K,Q/Z)]. Ainsi tout élément de Br(X¢)
provient, & addition prés d'un élément de Br(k), d'un élément de la forme
A= (t(t — 1), x) € Br(k(t)), avec x € Ker[H'(k,Q/Z) — H'(K,Q/Z)].

Soit A € Br(k(t)) un élément arbitraire de cette forme. Soient A = (a,n),
B = (bn), C = (a+bn). Ona (A,B) =1, (B,C) =1, (A,C) =1,
ce qui implique que le triplet (AB, AC, BC) n’a pas de diviseur commun.
Posons N = n/ABC € N. Pour tout x € Ker[H'(k,Q/Z) — H'(K,Q/Z)],
la proposition 2.8 assure que aAr est non ramifiée au-dessus de t = 0, que
bAF est non ramifiée au-dessus de ¢t = 1, et que (a + b).Ar est non ramifiée
au-dessus de t = oo. La proposition 2.9 montre que si Ar est non ramifiée
au-dessus de t = 0, alors (n/A).x = 0; que si Ap est non ramifiée au-dessus
de t = 1, alors (n/B).x = 0; enfin que si Ar est non ramifiée au-dessus
de t = oo, alors (n/C).x = 0. Si donc Afr est non ramifiée sur X¢, on a
nécessairement Ny = 0.
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ramifiée au-dessus de t = 0, (N, b).Ap est non ramifiée au-dessus de t = 1 et
(N,a+ b)Ar est non ramifiée au-dessus de t = oo.
Nous pouvons énoncer la :

Proposition 2.11 Supposons P(t) = aot®(t — 1)%, avec (a,b) = 1. Soient
c,d avec ad — bc = 1. Supposons que le quotient N de n par le produit
(a,n).(b,n).(a+b,n) est premier ¢ a.b.(a+b). Alors tout élément du groupe de
Brauer de X¢ est de la forme pr+or, avec p dans Br(k) et o = (t°(t—1)%, %)
dans Br(k(t)), ot x est un caractére dans Ker[H'(k,Z/N) — H'(K,Z/N)].

s paon b ey e s Gy e s aasue st e e e s
Br(X¢)/Br(k) = 0.
2) Soit @ = 1, b = 1, n impair. Alors N = n, et Br(X¢)/Br(k) est formé
des éléments (t, x)r avec x € Ker[H'(k,Z/n) — H'(K,Z/n)]. (Pour
un exemple concret, voir [CTSal], p. 541.)

3) Soita =1,b=1,n = 2m avec m impair. Alors N = m et Br(X®)/ Br(k)
est formé des éléments (¢, x)r avec

x € Ket[H'(k, Z/m) — H'(K,Z/m)].

On comparera les deux derniers exemples avec la proposition suivante.

e w3 A I TYVAY A

a) Soit x € H'(k,Q/Z). Supposons (t,x)r non ramifié au-dessus du point
t = co. Alors pour toute sous-extension L/k de K/k avec [K : L] = 2,
onax,=0¢€ HY(L,Q/Z).

/ trivial sur les élé’ments Vd ‘ordre 2 de Gvest Atrim'dl, alors
Br(X¢)/Bry(X¢) = 0.

c¢) Si Uextension K/k est galoisienne de groupe G, et que le groupe G est
engendré par ses éléments d’ordre 2, alors Br(X¢)/Bry(X¢) = 0.

—_— e o — e ———— —.e e mem v e e v m = Ao me v MR e v v mmme we w wmm tmem e s e mmn — = —re g

ou M est une L-algebre séparable. Sur le corps L, la variété qui nous intéresse
est définie par I'équation

PN svayoas

Si l’on pose t = 1/u, puis z, = u.z;, on obtient 1’équation

a(l —u) = Ngyr(22)-Nayr.(w).
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dont la fibre en u = 0 est géométriquement integre. L’hypothese que (¢, x)r
est non ramifié au-dessus du point ¢ = oo implique alors que le résidu de
(t,x)r = (1/u, x)r en u = 0 est nul, i.e. x; = 0, et établit le point a). Ainsi x
est dans I'intersection des noyaux des restrictions H'(k,Q/Z) — H'(L,Q/Z)
pour toutes les sous-extensions K/L/k avec [K : L] = 2. Si K/k satisfait
I'hypothése de b), cette intersection est nulle.

D’apreés la proposition 2.10, tout élément de Br(X°¢) < Br(F) s'écrit
comme une somme pr + (t,x)r + (t — 1,4)p, avec x et ¢ dans le noyau
de la restriction H'(k,Q/Z) — H'(K,Q/Z). L’équation at(t —1) = Ng(z)
et la formule de projection montrent qu’un tel élément peut s’écrire sous la
forme plus simple pr + (¢, x)r avec x € ker[H'(k,Q/Z) — H'(K,Q/Z)].
L’énoncé b) résulte alors de a).

L’énoncé c) est une conséquence immédiate. [

Cette proposition s’applique par exemple lorsque K/k est une extension
multiquadratique, ou lorsque le groupe G est un groupe symétrique. Elle
s’applique aussi lorsque G est un groupe simple différent de Z/p avec p premier
impair, mais on n’obtient alors qu’un cas particulier du corollaire 2.7.

Il semble difficile de décrire des éléments non verticaux de Br(X¢). Nous
devons pour l'instant nous contenter de :

W UTouLULLD MULL L) /7y ULT TAVCUDLIVLL UIYUGULGULIY UDT, 1T, SGLULDIGLLLIIT UT KIUVUpPU

de Galois G = Z/2xZ/2.Soit T = R}(/ka. De la suite exacte de G-modules

U_flllﬁlﬂl_ujﬁ.l 7Y,
on déduit H2(H,T) ~ H3(H,Z) pour tout sous-groupe H C G, donc
1% (T) = Z/2.

a) Soit P(t) = a[,(t — e)? avec e; € k. On a alors H_If,(f)p =7Z/2.
Sous ’hypothese H3(k, E*) = 0, satisfaite si k est un corps de nombres,
il existe des éléments de Br(X) qui sont non verticaux par rapport a
X — Aj. Ces éléments semblent difficiles & expliciter. Existe-t-il dans
Br(X¢) des éléments non verticaux par rapport a la fleche X¢ — P} ?

b) Supposons maintenant que tout facteur irréductible R(¢) du polynéme
P(t) définisse une extension k[t]/R(t) contenant l'une des trois sous-
extensions quadratiques de K/k. On a II1%(T) = Z/2. Par contre pour
tout corps L et tout L-tore M déployé par une extension quadratique de
L,on a IlIZ (M) = 0. En particulier, avec les hypothéses ci-dessus sur P,
ona Il (TQ@Zp) = 0 car Zp = @, Z[L;/k]. On a donc 12 (T) p = Z/2.
Il existe donc (Prop. 2.5) un élément de H'(k,Pic(X)) d’'image non



J.-L. COUIOT- L nerene, L. riararl €v A. IN. DKOrooogatov [o13)

nulle dans Hli(f) p. Sous I'hypothese H3(k, k) = 0, un tel élément
se releve en un élément (difficile & expliciter) de Br(X) qui est non
vertical par rapport & X — Aj. Existe-t-il un tel élément qui provienne
de Br(X°)? Il est facile de donner un exemple lorsque la k-variété X
est k-birationnelle au produit d’'un espace principal homogene sous T’
et d'une droite, mais on aimerait avoir un exemple moins trivial. Il
conviendrait par exemple d’étudier I'équation «.(t*—a) = Ng/(z), avec
K = k(v/a,v/b). Peut-on donner un exemple d’obstruction de Brauer-
Manin non verticale (pour X¢ — P})?

wr A RIS/ LA U

L L I I N T s T e i e TR D

une k-variété et X (Ay) lespace topologique des adeles de X. Par somme des
invariants locaux, on définit un accouplement continu & gauche

Ny AN 7 v f

C’est I’accouplement de Manin. Pour tout sous-ensemble B C Br(X) on note
X (Ax)? C X(Ay) le fermé de X (A) formé des adeles orthogonales & B par
rapport a l'accouplement ci-dessus. Pour B = Br(X), on écrit simplement
X (AP = X(A;)P". Comme 'observa Manin, la loi de réciprocité de la
théorie du corps de classes assure que l'inclusion diagonale X (k) C X(Ay)
se factorise par X (k) C X(Ax)® c X(Ay)P. L'adhérence de X (k) dans
X (A;) est donc contenue dans le fermé X (Ay,)B" de X(Ay). On dit que 1'ob-
struction de Brauer-Manin (resp. Uobstruction de Brauer—Manin attachée &
B C Br(X)) est la seule obstruction au principe de Hasse et & 'approxima-
tion faible sur X si X (k) est dense dans X (A;)B" (resp. si X (k) est dense
dans X (Az)?).
Le principal résultat arithmétique de cet article est le suivant.

Théoreme 3.1 Soient k le corps Q des rationnels et K/k une extension finie
de corps. Soient o € k* et a,b € Z. L’obstruction de Brauer—-Manin est la

seule obstruction au principe de Hasse et a l'approximation faible pour tout
modéle propre et lisse de la variété donnée par ’équation

at*(t — 1) = Ng(2), (4)
OU T esST une variable aans K €T Z une variabie aans A .
Démonstration Si a ou b est nul, I’équation (4) définit une k-variété

k-birationnelle a un espace principal homogene sous un tore. Dans ce cas
le résultat est bien connu ([Sa], Cor. 8.13). Soit n le degré de K sur k. Un
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tout couple d’entiers (o', ') avec o congru & a modulo n et b’ congru & b mod-
ulo n. On suppose désormais a > 0 et b > 0, et 'on reprend les notations et
définitions du début du §2 : ouverts U C V de la variété définie par (4), tore
T = R}(/ka, compactification lisse équivariante 7€, compactification lisse
partielle X de V, compactification lisse X de X . Il suffit de démontrer notre
énoncé pour un modele donné, par exemple, pour X¢. Soit {M,} € X°(A;)Br.
Soit 3 un ensemble fini de places de k. On cherche a4 montrer ’existence d’un
point rationnel M € X¢(k), qui soit de plus arbitrairement proche de chaque
M, pour v € 3.

Comme on a k[X]* = k", que le groupe abélien Pic(X) est libre de type fini
et que Br(X) = 0, et donc en particulier est fini (proposition 2.3), le corollaire
1.2 de [CTSk| montre que 'ensemble X (Ay)B" est dense dans X°¢(Ax)B". On
peut donc supposer {M,} € X (A;)®"

Comme Br(X) est fini et Pic(X) est libre de type fini (donc H'(k, Pic(X))
est fini), le quotient Br(X)/Bry(X) est fini, donc quotient d’un sous-groupe
fini B de Br(X). Soit U l'ouvert de X d’équation P(t) = Ngk(z) # 0.

On peut trouver un ensemble fini de places ¥’ O ¥ (contenant les places
archimédiennes de k) tel que X (resp. U) s’étende en un Ogx-schéma lisse
X (resp. U), et les éléments de B appartiennent & Br(X), ot Oy C k est
I’anneau des entiers en dehors de ¥'. Quitte & agrandir ¥/, on peut supposer
que, pour v € ¥/, M, € X(O,) et U(O,) # B (la derniére propriété résulte du
théoréme de Lang-Weil et du lemme de Hensel).

Par continuité de l'accouplement X (k,) x Br(X) — Q/Z, on peut, pour
v € X', trouver un point M, de U(k,) qui est proche de M, et tel que l'on ait
a(M,) = o(M)) pour tout o € B. Choisissons M) arbitraire dans #4(O,) pour
v ¢ X, alors a(M}) = a(M,) = 0 pour toute place v ¢ ¥’ et tout a € B,
donc {M} € X(A;)®". Finalement on voit que on peut supposer M, dans
U(ky) pour toute place v de k, quitte & remplacer M, par M.

Le théoréme principal de la théorie de la descente ([CTSa3]; [CTSk| Prop.

3; [Sk] Thm. 6.1.2) montre qu’il existe un torseur universel 7o sur X, i.e.
un torseur de type id: Pic(X) — Pic(X) et une adele {N,} € To(A:) qui se
projette sur {M,} par la fleche structurale 7y — X.

Pour le torseur universel 7g, on a k= k[Tg]* et Pic(T,) = 0 ([CTSa3],
Prop. 2.1.1), a fortiori H'(k, Pic(T,)) = 0. On a donc Bry(7y) = Br (7). (En
utilisant [HaSk], on peut montrer le résultat plus précis Bro(7y) = Br(7y),
mais on n’a pas besoin de cet énoncé pour la démonstration qui suit.)

Avec les notations du diagramme principal du §2, on a ici Zp = 72 et
donc T ® Zp = T?2. Le T-homomorphisme 72 — Pic(X) = T} se dualise en
un homomorphisme de k-tores Ty — T2. Soit 77 = To X T2 le torseur sur X
sous T? obtenu par changement de groupe.

Soit {P,} € Ti(Ay) 'image de {N,} € To(4Ay) via la projection naturelle
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To(Ax) = To(Ar)Pt (cette dernidre égalité provenant de Bry(7y) = Bri(7p))
dans T;(Ag )5,
En résumé : 'adele {P,} € Ti(Ay) est orthogonale & Br;(77), pour chaque
v,on a P, € Ty y(ky), et P, a pour image M, par la projection 71y — U.
La description locale des torseurs ([CTSa3], Thm. 2.3.1 p. 421; [Sk], Thm.
4.3.1), les deux lignes supérieures du diagramme (2) (avee TQZ p = T2) jouant
le réle du diagramme (2.3.2) de [CTSa3| (resp. du diagramme (4.21) de [Sk])

(noter que Pic(U) = 0), montre que la restriction 7, de 7; au-dessus de
I'ouvert U C X est donnée par un systeme d’équations :

U A u \L_J.} —.LVK/k-\ZA}, U—/—L—/Jli\/K/k\)L), Uf—b—l—MQiVK/k\y),

avow Jl, J2 T v LULLYCLLAUITD TLU A, Y VAllaUlTd UGlld f)x. Ull ULGLIECILLICLIL UT
variables évident montre que 7,y est k-isomorphe au produit de la sous-
variété lisse Y C AF" donnée par 1’équation

MLIVK/R\X) — V2IVE[R\Y ) — L, IVK/R\X) -V, IVK/E\Y) 7+~ Y

AveL A,y VAllalltd Ualld L), TUL UT 1 TOPaALT plllivipal LIULLIUECILIC 17 uU LWUlo 1

donné par 'équation
aﬁ‘llﬁg = NK/"’(ZI)’

prendre E¢ = E xT T¢.

Le k-morphisme ¢: 71y — E induit une application k-rationnelle de la
k-variété lisse Ty vers la k-variété projective E°. Une telle application est
automatiquement définie sur un ouvert W C 77 contenant tous les points de
codimension 1 de 7;. Soit a € Br(£°). L’élément ¢*(a) € Br(7; ) appartient
donc a Br(W) C Br(7;,y). Comme 77 est lisse sur un corps de caractéristique
zéro, et que W contient tous les points de codimension 1 de 77, le théoreme
de pureté pour le groupe de Brauer ([Gr], Thm. 6.1 (c) et Cor. 6.2) assure que
l'inclusion Br(7;) C Br(W) est une égalité. Il existe donc b € Br(7;) tel que
by = ¢*(a) € Br(Ti,y). Comme Br(E°) = Bri(E°) (cette égalité provenant
du fait que 7, et donc E est une variété géométriquement rationnelle), on a
¢*(a) € Bri(Ti,v), et donc b € Bry(Tq).

Comme 'adele {P,} est orthogonale & Bri(7;), on voit alors que l’adele
{q(P,)} € E°(A}) est orthogonale & Br;(E€) = Br(E¢). On sait ([Sa], Cor.
8.13) que l'obstruction de Brauer-Manin au principe de Hasse et & 'approxi-
mation faible est la seule pour E°, compactification lisse d’'un espace principal
homogene sous un k-tore. On a donc E¢(k) # 0, et il existe M; € E(k) arbi-
trairement proche de ¢(P,) pour chaque v € ¥.
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Q des rationnels, on sait ([HBSk]) que le principe de Hasse et I'approxi-
mation faible valent pour Y°. On peut donc trouver un point M, € Y (k)
arbitrairement proche des images de P, € 7 y(k,) ~ Y(k,) x E(k,) par
la premiere projection, ceci pour chaque v € X. L’application composée
Y (k) x E(k) ~ Ti,v(k) — U(k) envoie alors le point (Ms, M;) sur un k-point
M de U proche de chaque M, pourv € ¥. [

LOrouLaire 5.2 doil K e COTPS \Y aes rationnels. DOIENt & « K €0 4,0 & IN.
Soit V la k-variété définie par

at™(t — 1) = Ng/l\2) 7 U,

avec t variable gans k €t z variable dans K, et soit p: V. — Aj le mor-
phisme défine par t. Soit X¢ une k-compactification lisse de V' équipée d’un
k-morphisme p: X° — P}c étendant p. Soit

Bren (X°) = Br(X*) Np (Br(k(F*))) C Br(k(X)).

a) S1 K/k est cyclique, ou st a et b sont premeers entre eux, [‘obstruction
de Brauer-Manin verticale est la seule pour X¢, autrement dit : X°(k)
est dense dans X °(Ay)Brven(X7),

7/ 4 F3

extension cyclique, alors le principe de Hasse et Uapproximation faible
valent pour X°.

Il suffit de combiner le théoréme 3.1 avec les corollaires 2.6 et 2.7. Le
corollaire 2.6 donne d’ailleurs d’autres exemples ou l'énoncé a) vaut.

WUESTIONs d’emectivité Lomme On 1'a mentionne au paragraphe Z, pour
a,b et K/k arbitraires, on ne sait pas calculer explicitement le sous-groupe
Br(X¢) C Br(X). Le théoréme 3.1 n’est donc pas effectif.

Sous ’hypothese que a et b sont premiers entre eux (hypothese de [HBSk]),
le théoreme est effectif dans certains cas. Il en est ainsi lorsqu’on peut assurer
Br(X°¢)/Br(k) = 0, comme c’est le cas sous I'hypothese du corollaire 3.2 b).
La proposition 2.11 fournit d’autres cas ot le calcul de Br(X¢) est possible. Les
exemples suivant cette proposition donnent, par application du théoréme 3.1 :

Loronalre 9.9 o0t I Urk COTps CLLETSIOTE JUIlte Ue kK = Y Ge ueyre ou, €l
sott o € k*. Le principe de Hasse et Uapproximation faible valent pour tout
modéle projectif et lisse de la variété donnée par

ar (T — 1)” = INg/p\Z).
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couple (a,b) pour lequel l'existence d’un point k-rationnel sur un modeéle
projectif et lisse de la variété définie par at®(t — 1)° = Nk/i(z) n’est pas
automatique.

Pour P(t) de la forme «i(t — 1), il existe un point k-rationnel sur tout
modele projectif et lisse de U ([HBSk], §2, Rem. 1). La seule question &
considérer est donc celle de "approximation faible.

Corollaire 3.4 Soit K un corps extension finie de k = Q, de degré m ou
2m, avec m impair. Soit « € k*. Soit U la k-variété définie par les équations

at(t — 1) = Nyi(z) # 0.

Soit X le groupe fint Ker|H " (k,4/m) — H'(K,4L/m)|. Four x € X, sout
Ax = (t,x) € Br(k(t)).

s o v - " = 1] v A

s’annule sur U(k,).

b) Pour tout ensemble fini S de places de k, un point {P,} € [],c5U(ky)
est dans ’adhérence de U(k) si et seulement si on peut trouwver des
points P, € U(k,) pour v € Sy \ S tels que pour tout x € X, on ait

2 Aty) = D l, X)v =V,

vESy vESo

VW vy T v ) vu \YYy A ) N ALy ) N Ng a4

Le cas particulier m = 3 du corollaire ci-dessus avait été établi dans
[CTSal], Thm. 6.2. Méme dans ce cas, ’approximation faible ne vaut pas
toujours, comme le montre un exemple de D. Coray ([CTSal] p. 541).

44U ULLUUL CLLLS Ul AU LWV VRILULULL Sed s VU L UALDULLIUVY WU UVLLLWWULY UYWL WL vy

rationnel sur un modele projectif lisse ([HBSk], §2, Rem. 1) impliquent enfin
le :

Corollaire 3.5 Soit K un corps extension galoisienne finie de k = Q, de
groupe G, et soit o € k*. Si tout caractére de G trivial sur les éléments
d’ordre 2 de G est trivial, alors Uapprozimation faible vaut pour tout modéle
projectif et lisse de la variété donnée par

at(t — 1) = NK/k(Z).

L’hypothese sur G est satisfaite dans les cas suivants : le groupe G est
simple non cyclique ; le groupe G est engendré par ses éléments d’ordre 2, ce
qui est le cas si G est un groupe symétrique, et aussi si G est un produit de
groupes d’ordre 2.
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Constructing elements in Shafarevich—Tate
groups of modular motives

Neil Dummigan William Stein Mark Watkins

Abstract

We study Shafarevich—Tate groups of motives attached to mod-
ular forms on I'g(IV) of weight > 2. We deduce a criterion for the
existence of nontrivial elements of these Shafarevich—Tate groups, and
give 16 examples in which a strong form of the Beilinson—Bloch conjec-
ture would imply the existence of such elements. We also use modular
symbols and observations about Tamagawa numbers to compute non-
trivial conjectural lower bounds on the orders of the Shafarevich—Tate
groups of modular motives of low level and weight < 12. Our methods
build upon the idea of visibility due to Cremona and Mazur, but in
the context of motives rather than abelian varieties.

1 Introduction

Let E be an elliptic curve defined over Q and L(F,s) the associated L-
function. The conjecture of Birch and Swinnerton-Dyer [BS-D] predicts that
the order of vanishing of L(E,s) at s = 1 is the rank of the group E(Q) of
rational points, and also gives an interpretation of the leading term in the
Taylor expansion in terms of various quantities, including the order of the
Shafarevich—Tate group of E.

Cremona and Mazur [CM1] look, among all strong Weil elliptic curves over
Q@ of conductor N < 5500, at those with nontrivial Shafarevich-Tate group
(according to the Birch and Swinnerton-Dyer conjecture). Suppose that the
Shafarevich—Tate group has predicted elements of prime order p. In most
cases they find another elliptic curve, often of the same conductor, whose
p-torsion is Galois-isomorphic to that of the first one, and which has positive
rank. The rational points on the second elliptic curve produce classes in the
common H'(Q, E[p]). They show [CM2] that these lie in the Shafarevich—
Tate group of the first curve, so rational points on one curve explain elements
of the Shafarevich-Tate group of the other curve.
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The Bloch—Kato conjecture [BK] is the generalisation to arbitrary motives
of the leading term part of the Birch and Swinnerton-Dyer conjecture. The
Beilinson—Bloch conjecture [B, Be| generalises the part about the order of
vanishing at the central point, identifying it with the rank of a certain Chow
group.

This paper is a partial generalisation of [CM1] and [AS] from abelian vari-
eties over Q associated to modular forms of weight 2 to the motives attached
to modular forms of higher weight. It also does for congruences between mod-
ular forms of equal weight what [Du2] did for congruences between modular
forms of different weights.

We consider the situation where two newforms f and g, both of even
weight £ > 2 and level N, are congruent modulo a maximal ideal q of odd
residue characteristic, and L(g, k/2) = 0 but L(f,k/2) # 0. It turns out that
this forces L(g, s) to vanish to order > 2 at s = k/2. In Section 7, we give
sixteen such examples (all with £ = 4 and k£ = 6), and in each example, we
find that q divides the numerator of the algebraic number L(f,k/2)/vol,,
where vol,, is a certain canonical period.

In fact, we show how this divisibility may be deduced from the vanishing
of L(g,k/2) using recent work of Vatsal [V]. The point is, the congruence
between f and g leads to a congruence between suitable “algebraic parts” of
the special values L(f,k/2) and L(g,k/2). In slightly more detail, a multi-
plicity one result of Faltings and Jordan shows that the congruence of Fourier
expansions leads to a congruence of certain associated cohomology classes.
These are then identified with the modular symbols which give rise to the
algebraic parts of special values. If L(g,k/2) vanishes then the congruence
implies that L(f, k/2)/vol,, must be divisible by q.

The Bloch-Kato conjecture sometimes then implies that the Shafarevich—
Tate group III attached to f has nonzero g-torsion. Under certain hypotheses
and assumptions, the most substantial of which is the Beilinson—Bloch conjec-
ture relating the vanishing of L(g, k/2) to the existence of algebraic cycles, we
are able to construct some of the predicted elements of III using the Galois-
theoretic interpretation of the congruence to transfer elements from a Selmer
group for g to a Selmer group for f. One might say that algebraic cycles for
one motive explain elements of I1I for the other, or that we use the congruence
to link the Beilinson—Bloch conjecture for one motive with the Bloch-Kato
conjecture for the other.

We also compute data which, assuming the Bloch—Kato conjecture, pro-
vides lower bounds for the orders of numerous Shafarevich—Tate groups (see
Section 7.3). We thank the referee for many constructive comments.
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2 Motives and Galois representations

This section and the next provide definitions of some of the quantities ap-
pearing later in the Bloch—Kato conjecture. Let f = > a,¢" be a newform of
weight k& > 2 for I'o(IV), with coefficients in an algebraic number field F, which
is necessarily totally real. Let A be any finite prime of F, and let ¢ denote its
residue characteristic. A theorem of Deligne [Del] implies the existence of a
two-dimensional vector space V) over E), and a continuous representation

pr: Gal(Q/Q) — Aut(Vy),
such that
1. py is unramified at p for all primes p not dividing /N, and

2. if Frob, is an arithmetic Frobenius element at such a p then the char-
acteristic polynomial of Frob, U acting on Vj is 22 — a,x + pFL.

Following Scholl [Sc|, we can construct V) as the A-adic realisation of a
Grothendieck motive M. There are also Betti and de Rham realisations Vg
and Vg, both 2-dimensional E-vector spaces. For details of the construction
see [Sc]. The de Rham realisation has a Hodge filtration Vajg = F° D F! =
.. = F*1 5 FF = {0}. The Betti realisation Vp comes from singular
cohomology, while V) comes from étale ¢-adic cohomology. For each prime A,
there is a natural isomorphism Vz ® Ey ~ Vy. We may choose a Gal(Q/Q)-
stable Oy-module T inside each V). Define Ay = V,/Ty. Let A[\] denote
the A-torsion in Ay. There is the Tate twist V) (j) (for any integer j), which
amounts to multiplying the action of Frob, by p’.

Following [BK], Section 3, for p # ¢ (including p = o), we let

H}(@p, Va()) = ker (H'(Dy, V() — H' (1, VA7)

The subscript f stands for “finite part”; D, is a decomposition subgroup
at a prime above p, I, is the inertia subgroup, and the cohomology is for
continuous cocycles and coboundaries. For p = £, let

H}(Qe, VA() = ker(H!(Di,VAG)) = H'(Di, Va()) @0, Bors))

(see [BK], Section 1 for definitions of Fontaine’s rings Bes and Bgr). Let
H;(Q, Vi(j)) be the subspace of elements of H'(Q, VA(j)) whose local restric-
tions lie in H}(Qp, Vi(j)) for all primes p.

There is a natural exact sequence

0— Ta(j) = VA(j) = Ax(j) — 0.
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Let Hp(Qp, Ax(j)) = mH{(Qp, VA(j)). We then define the A-Selmer group
H;(Q, Ax(j)) as the subgroup of elements of H'(Q, Ax(j)) whose local re-
strictions lie in H}(Qy, Ax(j)) for all primes p. Note that the condition at
p = oo is superfluous unless ¢ = 2. Define the Shafarevich-Tate group

I(j) = P HHQ. A\())/mHHQ, VA ().

Define an ideal #I11(j) of Og, in which the exponent of any prime ideal A
is the length of the A\-component of ITI(j). We shall only concern ourselves
with the case j = k/2, and write III for ITI(k/2). It depends on the choice of
Gal(Q/Q)-stable Oy-module Ty inside each Vy. But if A[)] is irreducible then
T, is unique up to scaling and the A-part of III is independent of choices.

In the case kK = 2 the motive comes from a (self-dual) isogeny class of
abelian varieties over Q, with endomorphism algebra containing £. We can
choose an abelian variety B in the isogeny class whose endomorphism ring
contains the full ring of integers Og. If one takes all the T)(1) to be M-adic
Tate modules, then what we have defined above coincides with the usual
Shafarevich-Tate group of B (here we assume finiteness of the latter, or just
take the quotient by its maximal divisible subgroup). To see this one uses
[BK], 3.11 for ¢ = p. For ¢ # p, H}(Qp,vg) = 0. Considering the formal
group, we can represent every class in B(Q,)/¢B(Q,) by an (-power torsion
point in B(Q,), so that it maps to zero in H'(Q,, Ay).

Define the group of global torsion points

T = @D H(Q. Ax(k/2)).
A

This is analogous to the group of rational torsion points on an elliptic curve.
Define an ideal #I'g of O, in which the exponent of any prime ideal A is the
length of the A-component of I'g.

3 Canonical periods

From now on, we assume for convenience that N > 3. We need to choose
convenient Og-lattices Ts and Tyr in the Betti and de Rham realisations Vg
and Vir of M. We do this in such a way that T and Tyr ®o, Op[l/Nk!]
agree respectively with the Og-lattice 9; p and the Og[1/Nk!]-lattice M qr
defined in [DFG1] using cohomology, with nonconstant coefficients, of mod-
ular curves. (See especially [DFG1], Sections 2.2 and 5.4, and the paragraph
preceding Lemma 2.3.)

For any finite prime A of Op, define the O, module T), inside V) to be the
image of T ® O, under the natural isomorphism Vg ® E\ ~ V). Then the
Ox-module T} is Gal(Q/Q)-stable.
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Let M(N) be the modular curve over Z[1/N| parametrising generalised
elliptic curves with full level-N structure. Let € be the universal generalised
elliptic curve over M (N). Let €*~2 be the (k — 2)-fold fibre product of € over
M(N). (The motive My is constructed using a projector on the cohomology
of a desingularisation of €*~2). We realise M (N)(C) as the disjoint union of
©(N) copies of the quotient I'(N)\$H* (where $* is the completed upper half
plane), and let 7 be a variable on $), so that the fibre &, is isomorphic to the
elliptic curve with period lattice generated by 1 and 7. Let z; € C/(1,7) be a
variable on the ith copy of €, in the fibre product. Then 2mif(7)dr A dz; A
-+ Adzp,_g is a well-defined differential form on (a desingularisation of ) &*~2
and naturally represents a generating element of F*"'Tyr. (At least, we can
make our choices locally at primes dividing Nk! so that this is the case.) We
shall call this element e(f).

Under the de Rham isomorphism between Vijr @ C and V@ C, e(f) maps
to some element wy. There is a natural action of complex conjugation on
Vg, breaking it up into one-dimensional E-vector spaces V5 and V. Let wj[
and wy be the projections of wy to Vi @ C and Vz ® C respectively. Let
T% be the intersections of Vi with Tp. These are rank one Og-modules,
but not necessarily free, since the class number of Op may be greater than
one. Choose nonzero elements 5? of T# and let a* be the ideals [T% : OE5;E].
Define complex numbers ij by wjf = Qf&}t

4 The Bloch—Kato conjecture

In this section we extract from the Bloch-Kato conjecture for L(f, k/2) a
prediction about the order of the Shafarevich—Tate group, by analysing the
other terms in the formula.

Let L(f,s) be the L-function attached to f. For R(s) > £ it is defined
by the Dirichlet series with Euler product 337, a,n™ = [[,(Pp(p~*)) ", but
there is an analytic continuation given by an integral, as described in the
next section. Suppose that L(f, k/2) # 0. The Bloch-Kato conjecture for
the motive My (k/2) predicts the following equality of fractional ideals of E:

L(f.k/2) _ (H ok /2>> #111

volo, : 0t (#Tg)2

Here, and from this point onwards, + represents the parity of (k/2) — 1.
The quantity voly is equal to (2mi)*/? multiplied by the determinant of the
isomorphism Vi ®C ~ (Var/F*/?)®C, calculated with respect to the lattices
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OEcS}jf and the image of Tyg. For | # p, ordy(c,(7)) is defined to be

length H }(Qp, Ta () )tors — orda(Py(p ™))
= length (HO(QP,AA(]'))/HO (Qp: V/\(j>IP/T>\(j>IP)) :

We omit the definition of ordy(c,(j)) for A | p, which requires one to
assume Fontaine’s de Rham conjecture ([Fol], Appendix A6), and depends
on the choices of Tyr and T, locally at A\. (We shall mainly be concerned
with the g-part of the Bloch—Kato conjecture, where ¢ is a prime of good
reduction. For such primes, the de Rham conjecture follows from Faltings
[Fa], Theorem 5.6.)

Strictly speaking, the conjecture in [BK] is only given for £ = Q. We
have taken here the obvious generalisation of a slight rearrangement of [BK],
(5.15.1). The Bloch-Kato conjecture has been reformulated and generalised
by Fontaine and Perrin-Riou, who work with general £, though that is not
really the point of their work. [Fo2], Section 11 sketches how to deduce the
original conjecture from theirs, in the case £ = Q.

Lemma 4.1 vol,/a* = c(27)*2a*Qy, with ¢ € E and ordy(c) = 0 for
A NEL.

Proof We note that vol,, is equal to (27)*/? times the determinant of the
period map from F*?Vz @ C to Vlgt ® C, with respect to lattices dual to
those we used above in the definition of vol,, (cf. [De2], last paragraph of
1.7). Here we are using natural pairings. Meanwhile, ) is the determinant
of the same map with respect to the lattices F*/?Tyr and OE(S?. Recall that
the index of OE5?E inT Bi is the ideal a*. Then the proof is completed by
noting that, locally away from primes dividing Nk!, the index of Tygr in its
dual is equal to the index of T in its dual, both being equal to the ideal
denoted n in [DFG2]. O

Remark 4.2 Note that the “quantities” a*Q4 and vol,,/a* are independent
of the choice of 5?.

Lemma 4.3 Let pt N be a prime and j an integer. Then the fractional ideal
cp(7) is supported at most on divisors of p.

Proof Ason [F12], p. 30, for odd [ # p, ord,(c,(j)) is the length of the finite
Ox-module H°(Q,, H*(I,, Tx(j))tors), Where I, is an inertia group at p. But
T:\(j) is a trivial I,-module, so H*(I,,T\(j)) is torsion free. [
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Lemma 4.4 Let ¢4 N be a prime satisfying q > k. Suppose that Alq] is an
irreducible representation of Gal(Q/Q), where q | q. Letp | N be a prime, and
if p? | N suppose that p # +1 (mod q). Suppose also that f is not congruent
modulo q (for Fourier coefficients of index coprime to Nq) to any newform
of weight k, trivial character, and level dividing N/p. Then ordg(c,(j)) =0
for all integers j.

Proof There is a natural injective map from V;(j) /T,(5)" to H°(I,, A4(5))
(ie., Aq(j)'). Consideration of g-torsion shows that

dimoy, g H' (I, Ala](5)) = dimp, H°(I,, Vy(5)).
To prove the lemma it suffices to show that

dimoy,/q H' (I, Ala](5)) = dimg, H(I,, Vy(5)),
since this ensures that H°(I,, A4(j)) = V4(j)"/T4(j)™, and therefore that
H(Qp, Aq(5)) = HO(Qp, Va(5)™ /T4 (5)").

Suppose that Condition (b) of [L], Proposition 2.3 is not satisfied. Then
there exists a character y: Gal(Q/Q) — Oy of g-power order such that the
p-part of the conductor of V; ® x is strictly smaller than that of V. Let
fy denote the newform, of level dividing N/p, associated with V; ® x. The
character of f, has conductor at worst p. Since x has conductor p and g-power
order, p =1 (mod q), so by hypothesis p* { N. Hence f, has level coprime to
p and must have trivial character. Then the existence of f, contradicts our

hypotheses.
Suppose now that

dimo, /q H" (I, Ala](4)) > dimp, H(L,, V4(j)),

(if not, there is nothing to prove). If Condition (a) of [L], Proposition 2.3
were not satisfied then [L], Proposition 2.2 would imply the existence of an
impossible twist, as in the previous paragraph. (Here we are also using [L],
Proposition 1.1.)

Since Condition (c) is clearly also satisfied, we are in a situation covered by
one of the three cases in [L], Proposition 2.3. Since p # —1 (mod q) if p* | N,
Case 3 is excluded, so A[q](j) is unramified at p and ord,(N) = 1. (Here we
are using Carayol’s result that IV is the prime-to-q part of the conductor of
V, [Cal].) But then [JL], Theorem 1 (which uses the condition ¢ > k) implies
the existence of a newform of weight k, trivial character and level dividing
N/p, congruent to g modulo g, for Fourier coefficients of index coprime to
Ngq. This contradicts our hypotheses. [J

Remark 4.5 For an example of what can be done when f is congruent to a
form of lower level, see the first example in Section 7.4 below.

Lemma 4.6 If q | q is a prime of E such that ¢ { Nk!, then ordq(c,) = 0.
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Proof It follows from [DFG1], Lemma 5.7 (whose proof relies on an ap-
plication, at the end of Section 2.2, of the results of [Fa]) that 7, is the
04(Gal(Q,/Q,)]-module associated to the filtered module Tyr ® Oy by the
functor they call V. (This property is part of the definition of an S-integral
premotivic structure given in [DFG1], Section 1.2.) Given this, the lemma
follows from [BK], Theorem 4.1(iii). (That V is the same as the functor used
in [BK], Theorem 4.1 follows from [Fal, first paragraph of 2(h).) O

Lemma 4.7 If A[\] is an irreducible representation of Gal(Q/Q), then
ord,\(#I‘@) =0.

Proof This follows trivially from the definition. [

Putting together the above lemmas we arrive at the following:

Proposition 4.8 Let ¢ 1 N be a prime satisfying q > k and suppose that
Alq) is an irreducible representation of Gal(Q/Q), where q | q. Assume the
same hypotheses as in Lemma 4.4 for all p | N. Choose Tqr and Tg which
locally at q are as in the previous section. If L(f,k/2)a* /voly, # 0 then the
Bloch—Kato conjecture predicts that

ordg(#11T) = ord,(L(f, k/2)a* /vol.,).

5 Congruences of special values

Let f = > a,q" and g = > b,q" be newforms of equal weight k& > 2 for
['y(N). Let E be a number field large enough to contain all the coefficients
a, and b,. Suppose that q | ¢ is a prime of E such that f = ¢ (mod q),
ie. a, = b, (mod q) for all n. Assume that A[q] is an irreducible repre-
sentation of Gal(Q/Q) and that ¢ { No(N)k!. Choose (5}[ € T in such a
way that ordy(a®) = 0, i.e., 5;} generates T locally at q. Make two further
assumptions:

L(f,k/2) #0 and L(g,k/2) = 0.
Proposition 5.1 With assumptions as above, ordq(L(f, k/2)/vols) > 0.

Proof This is based on some of the ideas used in [V], Section 1. Note
the apparent typographical error in [V], Theorem 1.13 which should presum-
ably refer to “Condition 2”. Since ordy(a*) = 0, we just need to show that
ordg(L(f, k/2)/((2mi)*/2Q1)) > 0, where £1 = (—1)*/2~1 Tt is well known,
and easy to prove, that

/0 " flig)y "y = (2m)T(s)L(f. 9).
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Hence, if for 0 < 7 < k — 2 we define the jth period

ri(f) = f(2)#dz,

0

where the integral is taken along the positive imaginary axis, then
ri(f) = 1 (=2mi) "IV Ly (5 + 1).

Thus we are reduced to showing that ordg(ra/2)-1(f)/Q+) > 0.

Let Dy be the group of divisors of degree zero supported on P(Q). For a Z-
algebra R and integer r > 0, let P,(R) be the additive group of homogeneous
polynomials of degree r in R[X,Y]. Both these groups have a natural action
of I't(N). Let Sp,n(k,R) := Homp,(n) (Do, Pr—2(R)) be the R-module of
weight & modular symbols for I'; (V).

Via the isomorphism (8) of [V], Section 1.5 combined with the argument
of [V], 1.7, the cohomology class wjf corresponds to a modular symbol @jf €
Sr, v (k, C), and 5? corresponds to an element A}t € Sr,w)(k,Og,q). We are
now dealing with cohomology over X; (V) rather than M (), which is why
we insist that ¢t ¢(N). It follows from the last line of [St], Section 4.2 that,
up to some small factorials which do not matter locally at q,

k—2
@7 ([oo] - [0]) = Z rp () XY
J=(k/2—1 (mod2)
Since wf = Qiéi we see that
k—2
A% (o] — [0]) = (re(7)/QF) XY 270,
=0,

i=(k/2)—1 (mod 2)

The coefficient of X */2-1y (x/2)-1 s what we would like to show is divisible
by q. Similarly

32 ([oc] — [0]) = i ro () XIYE2.

j=(k/3 1 (mod2)

The coefficient of X */2=1y (/21 in this is 0, since L(g, k/2) = 0. Therefore
it would suffice to show that, for some p € Op, the element Ai — ,uAgi i
divisible by q in Spl(N)(k,OEyq). It suffices to show that, for some € Og,
the element 6?5 — /M;t is divisible by ¢, considered as an element of g-adic
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cohomology of X;(N) with nonconstant coefficients. This would be the case
if 6?5 and 53[ generate the same one-dimensional subspace upon reduction
modulo q. But this is a consequence of [FJ]|, Theorem 2.1(1) (for which we
need the irreducibility of A[q]). O

Remark 5.2 The signs in the functional equations of L(f, s) and L(g, s) are
equal. They are determined by the eigenvalue of the Atkin—Lehner involu-
tion Wy, which is determined by ax and by modulo g, because ay and by
are each N*/2-1 times this sign and q has residue characteristic coprime to
2N. The common sign in the functional equation is (—1)*?wy, where wy is
the common eigenvalue of Wy acting on f and g.

This is analogous to [CM1], remark at the end of Section 3, which shows
that if q has odd residue characteristic and L(f,k/2) # 0 but L(g,k/2) =0
then L(g, s) must vanish to order at least two at s = k/2. Note that Maeda’s
conjecture implies that there are no examples of g of level one with positive
sign in their functional equation such that L(g, k/2) = 0 (see [CF]).

6 Constructing elements of the Shafarevich—
Tate group

Let f, g and q be as in the first paragraph of the previous section. In the
previous section we showed how the congruence between f and g relates
the vanishing of L(g, k/2) to the divisibility by q of an “algebraic part” of
L(f,k/2). Conjecturally the former is associated with the existence of certain
algebraic cycles (for M,) while the latter is associated with the existence
of certain elements of the Shafarevich-Tate group (for My, as we saw in
§4). In this section we show how the congruence, interpreted in terms of
Galois representations, provides a direct link between algebraic cycles and
the Shafarevich—Tate group.

For f we have defined V), T\ and A,. Let Vy, T} and A’ be the cor-
responding objects for g. Since a, is the trace of Frob, ' on V4, it follows
from the Chebotarev Density Theorem that A[gq] and A’[q], if irreducible, are
isomorphic as Gal(Q/Q)-modules.

Recall that L(g,k/2) = 0 and L(f, k/2) # 0. Since the sign in the func-
tional equation for L(g, s) is positive (this follows from L(f, k/2) # 0, see Re-
mark 5.2), the order of vanishing of L(g, s) at s = k/2 is at least 2. According
to the Beilinson-Bloch conjecture [B, Be|, the order of vanishing of L(g, s)
at s = k/2 is the rank of the group CHS/Q(Mg)(Q) of Q-rational rational
equivalence classes of null-homologous, algebraic cycles of codimension k/2
on the motive M,. (This generalises the part of the Birch-Swinnerton-Dyer
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conjecture which says that for an elliptic curve E/Q, the order of vanishing
of L(E,s) at s = 1 is equal to the rank of the Mordell-Weil group E(Q).)

Via the g-adic Abel-Jacobi map, CHIS/Z(MQ)(Q) maps to H'(Q, V;(k/2)),
and its image is contained in the subspace H(Q,V/(k/2)), by [Ne], 3.1 and
3.2. If, as expected, the g-adic Abel-Jacobi map is injective, we get (assuming
also the Beilinson-Bloch conjecture) a subspace of H(Q, V;(k/2)) of dimen-
sion equal to the order of vanishing of L(g, s) at s = k/2. In fact, one could
simply conjecture that the dimension of H;(Q, V;(k/2)) is equal to the order
of vanishing of L(g, s) at s = k/2. This would follow from the “conjectures”
C,.(M) and Ci(M) of [Fo2], Sections 1 and 6.5. We shall call it the “strong”
Beilinson—Bloch conjecture.

Similarly, if L(f,k/2) # 0 then we expect that H}(Q,V4(k/2)) = 0, so
that H;(Q, Aq(k/2)) coincides with the g-part of III.

Theorem 6.1 Let q 1 N be a prime satisfying ¢ > k. Let r be the dimen-
sion of Hi(Q, V{(k/2)). Suppose that Alq] is an irreducible representation of
Gal(Q/Q) and that for no prime p | N is f congruent modulo q (for Fourier
coefficients of index coprime to Nq) to a newform of weight k, trivial char-
acter and level dividing N/p. Suppose that, for all primes p | N, p # —w,
(mod q), with p # +1 (mod q) if p* | N. (Here w, is the common eigenvalue
of the Atkin—Lehner involution W, acting on f and g.) Then the q-torsion
subgroup of Hj(Q, Aq(k/2)) has Fq-rank at least r.

Proof The theorem is trivially true if r = 0, so we assume that r >
0. It follows easily from our hypothesis that the rank of the free part of
H}(Q,T;(k/2)) is r. The natural map from H;(Q,T;(k/2))/aH};(Q, T;(k/2))
to H'(Q, A’[q](k/2)) is injective. Take a nonzero class ¢ in the image, which
has Fy-rank 7. Choose d € H}(Q,T;(k/2)) mapping to c. Consider the

Gal(Q/Q)-cohomology of the short exact sequence
0 — Alq)(k/2) — Ay(k/2) — A4(k/2) — 0,

where 7 is multiplication by a uniformising element of O,. By irreducibil-
ity, H°(Q, A[q](k/2)) is trivial. Hence H°(Q, A4(k/2)) is trivial, so that
H'(Q, Alq](k/2)) injects into H'(Q, A4(k/2)), and we get a nonzero g-torsion
class v € HY(Q, A4(k/2)).

Our aim is to show that res,(v) € Hj(Qy, Aq(k/2)), for all (finite) primes
p. We consider separately the cases p{gN, p| N and p = q.

Case 1, ptgN:

Consider the I,-cohomology of the short exact sequence

0 — A'lq)(k/2) — AL(k/2) - Ay(k/2) =0
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(the analogue for g of the above).

Since in this case Aj(k/2) is unramified at p, H%(I,, A}(k/2)) = Ay(k/2),
which is g-divisible. Therefore H'(I,, A'[q](k/2)) (which, remember, is the
same as H'(I,, A[q](k/2))) injects into H' (I, Aj(k/2)). It follows from the
fact that d € H(Q,T,(k/2)) that the image in H'(I,, Ay(k/2)) of the re-
striction of ¢ is zero, hence that the restriction of ¢ to H'(I,, A'[q](k/2)) ~
H*'(1,, Alq](k/2)) is zero. Hence the restriction of v to H'(1,, Aq(k/2)) is also
zero. By [Fl1], line 3 of p. 125, H}(Q,, Aq(k/2)) is equal to (not just con-
tained in) the kernel of the map from H'(Q,, A4(k/2)) to H'(I,, A4(k/2)), so
we have shown that res,(v) € H(Qp, Aq(k/2)).

Case 2, p| N:
We first show that H°(I,, Aj(k/2)) is g-divisible. It suffices to show that

dim H°(I,,, A'lq)(k/2)) = dim H(L,, V{(k/2)),

since then the natural map from H(I,, V/(k/2)) to H°(I,, Ay(k/2)) is surjec-

pr Vyq
tive; this may be done as in the proof of Lemma 4.4. It follows as above that

the image of ¢ € HY(Q, Alq](k/2)) in H'(I,, Alq](k/2)) is zero. Then res,(c)
comes from H'(D,/I,, H(I,, Alq](k/2))), by inflation-restriction. The order
of this group is the same as the order of the group H°(Q,, A[q](k/2)) (this
is [W], Lemma 1), which we claim is trivial. By the work of Carayol [Cal],
the level N is the conductor of Vg(k/2), so p | N implies that V,(k/2) is
ramified at p, hence dim H°([,, V,(k/2)) = 0 or 1. As above, we see that
dim H(1,, Vy(k/2)) = dim H°(I,, A[q](k/2)), so we need only consider the
case where this common dimension is 1. The (motivic) Euler factor at p for
My is (1 — ap™*)~', where Frob, ! acts as multiplication by « on the one-
dimensional space H°(I,,V;). It follows from [Cal], Theoréme A that this is
the same as the Euler factor at p of L(f,s). By [AL], Theorems 3(ii) and 5,
it then follows that p>{ N and a = —wpp(k/m*l, where w, = %1 is such that
W,f = w,f. We twist by k/2, so that Frob;1 acts on H%(,, V4(k/2)) (hence
also on H(I,, Alq](k/2))) as —w,p~!. Since p Z —w, (mod q), we see that
HY(Q,, Alq](k/2)) is trivial. Hence res,(c) = 0 so res,(y) = 0 and certainly
lies in H;(Qyp, Aq(k/2)).

Case 3, p=q:

Since ¢ 1 N is a prime of good reduction for the motive M, Vq’ is a crystalline
representation of Gal(Q,/Q,), which means that Dess(V;) and V; have the
same dimension, where Des(V) == H°(Qq, V, ®q, Beris). (This is a conse-
quence of [Fa], Theorem 5.6.) As already noted in the proof of Lemma 4.6,
T, is the Oy4[Gal(Q,/Q,)]-module associated to the filtered module Tyr ® O,.
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Since also ¢ > k, we may now prove, in the same manner as [Dul], Proposi-
tion 9.2, that res,(v) € H;(Qy, Aq(k/2)). For the convenience of the reader,
we give some details.

In [BK], Lemma 4.4, a cohomological functor {h'};> is constructed on the
Fontaine-Lafaille category of filtered Dieudonné modules over Z,. h'(D) =0
for all i > 2 and all D, and h*(D) = Ext'(1gp, D) for all i and D, where 1pp
is the “unit” filtered Dieudonné module.

Now let D = Tyr ® Oq and D' = T} ® O,. By [BK], Lemma 4.5(c),

h'(D) ~ HY(Qq, Ty),
where

He(Qq, Ty) = ker(H'(Qq, Tq) — H'(Qq, Vo) /He (Qq, V)

and

Hel(@qv Vq) = ker(Hl(@q, Vﬁ) - Hl(qu Bgri:sl ®Q, Vq))
Likewise h'(D') ~ H}(Qq, T;). When applying results of [BK] we view D, T,
etc. simply as Zg-modules, forgetting the Og-structure.

For an integer j, let D(j) be D with the Hodge filtration shifted by j.
Then

h'(D(j)) = He(Qq, Ty(5))
(provided that k —p+1 < j < p—1, so that D(j) satisfies the hypotheses of
[BK], Lemma 4.5). By [BK], Corollary 3.8.4,

H(Qq, Va(4))/He (Qq, Va(5)) = (D(j) @z, Qq)/(1 = F)(D(5) ®z, Qy),

where f is the Frobenius operator on crystalline cohomology. By Scholl [Sc],
1.2.4(ii), and the Weil conjectures, H}(Qq, V4(5)) = H}(Qq, V4(4)), since j #
(k—1)/2. Similarly HA(Q,, V/(j)) = HNQ,, V(7).

We have

h'(D(k/2)) = H(Qq, Ty(k/2)) and  h'(D'(k/2)) = H(Qq, Ty(k/2)).
The exact sequence in [BK], middle of p. 366, gives a commutative diagram

W(D'(k/2)) —— h(D'(k/2)) —— hD'(k/2)/aD'(k/2))

| | |

HY(Qq, Ty(k/2)) —— H'Qq, T3(k/2)) ——  H'(Qq, A'la](k/2)).

The vertical arrows are all inclusions, and we know the image of h'(D’(k/2))
in H(Q,, T,(k/2)) is exactly H}(Qq, Ty(k/2)). The top right horizontal map
is surjective since h?(D'(k/2)) = 0.
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The class res,(c) € H'(Q,, A'[q](k/2)) is in the image of H}(Q,, Ty(k/2)),
by construction, and therefore is in the image of h'(D'(k/2)/qD’(k/2)). By
the fullness and exactness of the Fontaine-Lafaille functor [FL| (see [BK],
Theorem 4.3), D'(k/2)/qD’(k/2) is isomorphic to D(k/2)/qD(k/2).

It follows that the class res,(c) € H'(Q,, Alg](k/2)) is in the image of
h*(D(k/2)/qD(k/2)) by the vertical map in the exact sequence analogous
to the above. Since the map from h'(D(k/2)) to h'(D(k/2)/qD(k/2)) is
surjective, res,(c) lies in the image of H;(Qy, Tq(k/2)). From this it follows
that res,(y) € Hp(Qq, Aq(k/2)), as desired. O

[AS], Theorem 2.7 is concerned with verifying local conditions in the case
k = 2, where f and g are associated with abelian varieties A and B. (Their
theorem also applies to abelian varieties over number fields.) Our restriction
outlawing congruences modulo q with cusp forms of lower level is analogous
to theirs forbidding ¢ from dividing Tamagawa factors c4; and cp;. (In the
case where A is an elliptic curve with ord;(j(A)) < 0, consideration of a Tate
parametrisation shows that if ¢ | cay, i.e., if ¢ | ord;(j(A)), then it is possible
that Alg| is unramified at [.)

In this paper we have encountered two technical problems which we dealt
with in quite similar ways:

1. dealing with the g-part of ¢, for p | N;
2. proving local conditions at primes p | N, for an element of g-torsion.

If our only interest was in testing the Bloch-Kato conjecture at ¢, we could
have made these problems cancel out, as in [DFG1], Lemma 8.11, by weaken-
ing the local conditions. However, we have chosen not to do so, since we are
also interested in the Shafarevich—Tate group, and since the hypotheses we
had to assume are not particularly strong. Note that, since A[q] is irreducible,
the g-part of IIT does not depend on the choice of Tj,.

7 Examples and Experiments

This section contains tables and numerical examples illustrating the main
themes of this paper. In Section 7.1, we explain Table 1, which contains 16 ex-
amples of pairs f, g such that the strong Beilinson-Bloch conjecture and Theo-
rem 6.1 together imply the existence of nontrivial elements of the Shafarevich—
Tate group of the motive attached to f. Section 7.2 outlines the higher-weight
modular symbol computations used in making Table 1. Section 7.3 discusses
Table 2, which summarizes the results of an extensive computation of conjec-
tural orders of Shafarevich—Tate groups for modular motives of low level and
weight. Section 7.4 gives specific examples in which various hypotheses fail.



Neil Dummigan, William Stein and Mark Watkins 105

Note that in §7 “modular symbol” has a different meaning from in §5, being
related to homology rather than cohomology. For precise definitions see [SV].

7.1 Table 1: visible III

Table 1 lists sixteen pairs of newforms f and g (of equal weights and levels)

g deg g f deg f | possible ¢
127k4A 1 127k4C 17 43
159k4B 1 159k4E 16 5, 23
365k4A 1 365k4E 18 29
369k4B 1 369k41 9 13
453k4 A 1 453k4E 23 17
465k4B 1 465k41 7 11
477k4B 1 477k4L 12 73
567k4B 1 567k4aH 8 23
581k4A 1 581k4E 34 192
657k4A 1 657k4C 7 5
657k4A 1 657k4G 12 5
681k4A 1 681k4D 30 59
684k4C 1 684k4K 4 72
95k6A 1 95k6D 9 31, 59
122k6A 1 122k6D 6 73
260k6A 1 260k6E 4 17

Table 1: Visible IIT

along with at least one prime ¢ such that there is a prime q | ¢ with f = ¢
(mod q). In each case, ord,—y/2 L(g,k/2) > 2 while L(f,k/2) # 0. It uses the

following notation: the first column contains a label whose structure is
[Level]k[Weight][GaloisOrbit)|

This label determines a newform g = »_ a,¢" up to Galois conjugacy. For
example, 127k4C denotes a newform in the third Galois orbit of newforms in
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S4(To(127)). Galois orbits are ordered first by the degree of Q(... ,ay,,...),
then by the sequence of absolute values |Tr(a,(g))| for p not dividing the
level, with positive trace being first in the event that the two absolute values
are equal, and the first Galois orbit is denoted A, the second B, and so on.
The second column contains the degree of the field Q(... ,a,,...). The third
and fourth columns contain f and its degree, respectively. The fifth column
contains at least one prime ¢ such that there is a prime q | ¢ with f = ¢
(mod q), and such that the hypotheses of Theorem 6.1 are satisfied for f, g,
and g.

For the two examples 581k4E and 684k4K, the square of a prime ¢
appears in the g-column, which means that ¢ divides the order of the group
Sk(To(N),Z) /(W + W) defined at the end of 7.3 below.

We describe the first line of Table 1 in more detail. The next section gives
further details on how the computations were performed.

Using modular symbols, we find that there is a newform

g=q— ¢ —8¢° —7¢* —15¢° + 8¢° — 25¢" + - - € S4(To(127))

with L(g,2) = 0. Because Wia7(g) = g, the functional equation has sign +1,
so L'(g,2) = 0 as well. We also find a newform f € S;(T'g(127)) whose Fourier
coefficients generate a number field K of degree 17, and by computing the
image of the modular symbol XY {0, 00} under the period mapping, we find
that L(f,2) # 0. The newforms f and g are congruent modulo a prime q
of K of residue characteristic 43. The mod q reductions of f and g are both
equal to

f=q+42¢° + 35¢> + 36¢" + 28¢° + 8¢° + 18¢" + - - - € Fu3[[q]].

There is no form in the Eisenstein subspaces of M4(I'g(127)) whose Fourier
coefficients of index n, with (n,127) = 1, are congruent modulo 43 to those
of f, 80 psq A pgq is irreducible. Since 127 is prime and S;(SLy(Z)) = 0, f
does not arise from a level 1 form of weight 4. Thus we have checked the
hypotheses of Theorem 6.1, so if 7 is the dimension of H}(Q, V{(k/2)) then
the g-torsion subgroup of H;(Q, Aq(k/2)) has Fg-rank at least 7.

Recall that since ord,—j 2 L(g,s) > 2, we expect that » > 2. Then, since
L(f,k/2) # 0, we expect that the g-torsion subgroup of H}(@,Aq(k/Q)) is
equal to the g-torsion subgroup of III. Admitting these assumptions, we have
constructed the g-torsion in III predicted by the Bloch-Kato conjecture.

For particular examples of elliptic curves one can often find and write
down rational points predicted by the Birch and Swinnerton-Dyer conjec-
ture. It would be nice if likewise one could explicitly produce algebraic cycles
predicted by the Beilinson—Bloch conjecture in the above examples. Since
L'(g,k/2) = 0, Heegner cycles have height zero (see [Z], Corollary 0.3.2), so

ought to be trivial in CH’S/Q(MQ) ® Q.
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7.2 How the computation was performed

We give a brief summary of how the computation was performed. The al-
gorithms we used were implemented by the second author, and most are a
standard part of MAGMA (see [BCP)).

Let g, f, and g be some data from a line of Table 1 and let N denote
the level of g. We verified the existence of a congruence modulo ¢, that
L(g,k/2) = L'(g,k/2) = 0 and L(f,k/2) # 0, and that psq = pgq is irre-
ducible and does not arise from any S(I'g(N/p)), as follows:

To prove there is a congruence, we showed that the corresponding integral
spaces of modular symbols satisfy an appropriate congruence, which forces
the existence of a congruence on the level of Fourier expansions. We showed
that pg 4 is irreducible by computing a set that contains all possible residue
characteristics of congruences between g and any Eisenstein series of level
dividing N, where by congruence, we mean a congruence for all Fourier co-
efficients of index n with (n, N) = 1. Similarly, we checked that g is not
congruent to any form h of level N/p for any p that exactly divides N by
listing a basis of such h and finding the possible congruences, where again we
disregard the Fourier coefficients of index not coprime to V.

To verify that L(g,k/2) = 0, we computed the image of the modular
symbol € = X%~'Y371{0,00} under a map with the same kernel as the
period mapping, and found that the image was 0. The period mapping sends
the modular symbol e to a nonzero multiple of L(g, g), so that e maps to 0
implies that L(g,k/2) = 0. In a similar way, we verified that L(f,k/2) # 0.
Next, we checked that Wy (g) = (—1)¥/2g which, because of the functional
equation, implies that L'(g,k/2) = 0. Table 1 is of independent interest
because it includes examples of modular forms of even weight > 2 with a
zero at k/2 that is not forced by the functional equation. We found no such
examples of weights > 8.

7.3 Conjecturally nontrivial 111

In this section we apply some of the results of Section 4 to compute lower
bounds on conjectural orders of Shafarevich-Tate groups of many modular
motives. The results of this section suggest that III of a modular motive
is usually “not visible at level N7, that is, not explained by congruences at
level N (compare with the observations of [CM1] and [AS]). For example,
when k£ > 6 we find many examples of conjecturally nontrivial III but no
examples of nontrivial visible I1I.

For any newform f, let L(M;/Q,s) = Hle L(f®,s) where f@ runs over
the Gal(Q/Q)-conjugates of f. Let T be the complex torus C?/(27i)*/2L,
where L is the lattice defined by integrating integral cuspidal modular symbols
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for T'o(/V) against the conjugates of f. Let Qg denote the volume of
the (—1)*/2=1 eigenspace T* = {z € T : z = (=1)*?~12} for complex
conjugation on 7.

Lemma 7.1 Suppose that p 4 Nk! is such that f is not congruent to any of
its Galois conjugates modulo a prime dividing p. Then the p-parts of

LOGIOHD oy (L2 )

QMf/Q vol

are equal, where voly, is as in Section 4.

Proof Let H be the Z-module of all integral cuspidal modular symbols for
[o(N). Let I be the image of H under projection into the submodule of H®Q
corresponding to f and its Galois conjugates. Note that I is not necessarily
contained in H, but it is contained in H ® Z[%] where m is divisible by the
residue characteristics of any primes of congruence between f and cuspforms
of weight k for I'g(N) which are not Galois conjugate to f.

The lattice £ defined before the lemma is obtained (up to divisors of Nk!)
by pairing the cohomology modular symbols & O (as in §5) with the homology
modular symbols in H; equivalently, since the pairing factors through the
map H — I, the lattice £ is obtained by pairing with the elements of I. For
1 <1 < dlet I; be the Og-module generated by the image of the projection
of I into I ® E corresponding to f®. The finite index of I ® O in @?:1 I; is
divisible only by primes of congruenee between f and its Galois conjugates.
Up to these primes, /0 /(2m3)((#/2=Dd ig then a product of the d quantities
obtained by pairing &= 0 with I;, for 1 < ¢ < d. (These quantities inhabit
a kind of tensor product of C* over £* with the group of fractional ideals of
E.) Bearing in mind the last line of §3, we see that these quantities are the
at O (> UpP to divisors of Nk!. Now we may apply Lemma 4.1. We then have
a factorisation of the left hand side which shows it to be equal to the right
hand side, to the extent claimed by the lemma. Note that L(f k/ 2 g% has an
interpretation in terms of integral modular symbols as in §5 and just gets
Galois conjugated when one replaces f by some f®. O

Remark 7.2 The newform f = 319k4C is congruent to one of its Galois
conjugates modulo 17 and 17 divides L(M;/Q, k/2)/Q, /g, so the lemma and

our computations say nothing about whether 17 divides Norm (%}f) ai) or

otherwise.

Let S be the set of newforms with level N and weight k satisfying either
k=4and N <321,ork=6and N <199, or k=8 and N <149, or k£ = 10
and N <72, ork=12and N <49. Given f € §, let B be defined as follows:
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1. Let Ly be the numerator of the rational number L(M;/Q, k/2)/Qu, jq-
If Ly =0 let B =1 and terminate.

2. Let Lo be the part of L, that is coprime to Nk!.

3. Let L3 be the part of Ly that is coprime to p+ 1 for every prime p such
that p? | N.

4. Let Ly be the part of L3 coprime to the residue characteristic of any
prime of congruence between f and a form of weight k, trivial charac-
ter and lower level. (By congruence here, we mean a congruence for
coefficients a,, with n coprime to the level of f.)

5. Let L5 be the part of Ly coprime to the residue characteristic of any
prime of congruence between f and an Eisenstein series. (This elimi-
nates residue characteristics of reducible representations.)

6. Let B be the part of Ls coprime to the residue characteristic of any
prime of congruence between f and any one of its Galois conjugates.

Proposition 4.8 and Lemma 7.1 imply that if ord,(B) > 0 then, according to
the Bloch-Kato conjecture, ord,(#I11) = ord,(B) > 0.

We computed B for every newform in §. There are many examples in
which L3 is large, but B is not, and this is because of Tamagawa factors. For
example, 39k4C has L3 = 19, but B = 1 because of a 19-congruence with
a form of level 13; in this case we must have 19 | ¢3(2), where ¢3(2) is as in
Section 4. See Section 7.4 for more details. Also note that in every example B
is a perfect square, which, away from congruence primes, is as predicted by
the existence of Flach’s generalised Cassels—Tate pairing [F11]. (Note that if
A[)] is irreducible then the lattice Ty is at worst a scalar multiple of its dual,
so the pairing shows that the order of the A-part of 111, if finite, is a square.)
That our computed value of B should be a square is not a priori obvious.

For simplicity, we discard residue characteristics instead of primes of rings
of integers, so our definition of B is overly conservative. For example, 5 occurs
in row 2 of Table 1 but not in Table 2, because 159k4E is Eisenstein at
some prime above 5, but the prime of congruences of characteristic 5 between
159k4B and 159k4E is not Eisenstein.

The newforms for which B > 1 are given in Table 2 on pp. 112-115. The
second column of the table records the degree of the field generated by the
Fourier coefficients of f. The third contains B. Let W be the intersection
of the span of all conjugates of f with S,(I'o(N),Z) and W+ the Petersson
orthogonal complement of W in Si(I'¢(V),Z). The fourth column contains
the odd prime divisors of #(Sy(To(N),Z)/(W +W+)), which are exactly the
possible primes of congruence between f and nonconjugate cusp forms of the
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same weight and level. We place a * next to the four entries of Table 2 that
also occur in Table 1.

7.4 Examples in which hypotheses fail

We have some other examples where forms of different levels are congruent
(for Fourier coefficients of index coprime to the levels). However, Remark 5.2
does not apply, so that one of the forms could have an odd functional equation,
and the other could have an even functional equation. For instance, we have a
19-congruence between the newforms g = 13k4A and f = 39k4C of Fourier
coefficients of index coprime to 39. Here L(f,2) # 0, while L(g,2) = 0 since
L(g,s) has odd functional equation. Here f fails the condition about not
being congruent to a form of lower level, so in Lemma 4.4 it is possible that
ordg(c3(2)) > 0. In fact this does happen. Because V{ (attached to g of level
13) is unramified at p = 3, H°(I,, A[q]) (the same as H(I,, A'[q])) is two-
dimensional. As in (2) of the proof of Theorem 6.1, one of the eigenvalues
of Frob, ! acting on this two-dimensional space is a = —wpp(k/ 2=1 where
W,f = wpf. The other must be 5 = —wppk/z, so that a3 = p*~!. Twisting
by k/2, we see that Frobgl acts as —w, on the quotient of HY(I,, A[q](k/2))
by the image of H°(I,,V4(k/2)). Hence ord,(c,(k/2)) > 0 when w, = —1,
which is the case in our example here with p = 3. Likewise H°(Q,, A[q](k/2))
is nontrivial when w, = —1, so (2) of the proof of Theorem 6.1 does not
work. This is just as well, since had it worked we would have expected
ordg(L(f,k/2)/vols) > 3, which computation shows not to be the case.

In the following example, the divisibility between the levels is the other
way round. There is a 7-congruence between g = 122k6A and f = 61k6B,
both L-functions have even functional equation, and L(g,3) = 0. In the proof
of Theorem 6.1, there is a problem with the local condition at p = 2. The
map from H'(Iy, A'[q](3)) to H'(Iy, Ay(3)) is not necessarily injective, but
its kernel is at most one dimensional, so we still get the g-torsion subgroup
of H;(Q, Aq(2)) having Fo-rank at least 1 (assuming r > 2), and thus get
elements of III for 61k6B (assuming all along the strong Beilinson—Bloch
conjecture). In particular, these elements of III are invisible at level 61.
When the levels are different we are no longer able to apply [FJ], Theorem 2.1.
However, we still have the congruences of integral modular symbols required
to make the proof of Proposition 5.1 go through. Indeed, as noted above,
the congruences of modular forms were found by producing congruences of
modular symbols. Despite these congruences of modular symbols, Remark 5.2
does not apply, since there is no reason to suppose that wy = wys, where N
and N’ are the distinct levels.

Finally, there are two examples where we have a form g with even func-
tional equation such that L(g,k/2) = 0, and a congruent form f which has
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odd functional equation; these are a 23-congruence between g = 453k4 A and
f =151k4A and a 43-congruence between g = 681k4A and f = 227k4A.
If ord,—y L(f,s) = 1, it ought to be the case that dim(H}(Q,Vy(2))) = 1. If
we assume this is so, and similarly that r» = ords—2(L(g, s)) > 2, then unfor-
tunately the appropriate modification of Theorem 6.1 (with strong Beilinson—
Bloch conjecture) does not necessarily provide us with nontrivial g-torsion in
II. Tt only tells us that the g-torsion subgroup of H}(Q, A4(2)) has Fg-rank
at least 1. It could all be in the image of H}(Q, V4(2)). I appears in the
conjectural formula for the first derivative of the complex L function, evalu-
ated at s = k/2, but in combination with a regulator that we have no way of
calculating.

Let L,(f,s) and L,(g,s) be the ¢g-adic L functions associated with f and
g by the construction of Mazur, Tate and Teitelbaum [MTT], each divided
by a suitable canonical period. We may show that q | L;(f, k/2), though it
is not quite clear what to make of this. This divisibility may be proved as
follows. The measures dp s, and (a g-adic unit times) djiy o in [MTT] (again,
suitably normalised) are congruent mod g, as a result of the congruence be-
tween the modular symbols out of which they are constructed. Integrating
an appropriate function against these measures, we find that L|(f,k/2) is
congruent modq to L,(g,k/2). It remains to observe that L(g,k/2) = 0,
since L(g, k/2) = 0 forces L,(g,k/2) = 0, but we are in a case where the signs
in the functional equations of L(g,s) and L,(g, s) are the same, positive in
this instance. (According to the proposition in [MTT], Section 18, the signs
differ precisely when L,(g, s) has a “trivial zero” at s = k/2.)

We also found some examples for which the conditions of Theorem 6.1
were not met. For example, we have a 7-congruence between 639k4B and
639k4H, but w;; = —1, so that 71 = —w; (mod 7). There is a similar prob-
lem with a 7-congruence between 260k6A and 260k6E — here w3 = 1 so
that 13 = —wy3 (mod 7). According to Propositions 5.1 and 4.8, Bloch-Kato
still predicts that the g-part of III is nontrivial in these examples. Finally,
there is a 5-congruence between 116k6A and 116k6D, but here the prime 5
is less than the weight 6 so Propositions 5.1 and 4.8 (and even Lemma 7.1)
do not apply.
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f deg f | B (bound for III) | all odd congruence primes
127k4Cx | 17 | 432 43,127

159KAE 8 232 3, 5, 11, 23, 53, 13605689
263k4B 39 412 263

269k4C 39 232 269

271k4B 39 292 271

281k4B 40 292 281

205k4C | 16 | 7 3.5, 11, 59, 101, 659, 70791023
299k4C 20 292 13, 23, 103, 20063, 21961
321k4C 16 132 3, 5, 107, 157, 12782373452377
95k6D 9 312.592 3,5, 17,19, 31, 59, 113, 26701
101k6B 24 172 101

103k6B 24 232 103

111k6C 112 3, 37, 2796169609

122k6Dx 732 3, 5,61, 73, 1303196179
153k6G 72 3, 17, 61, 227

157k6B 34 2512 157

167k6B 40 412 167

172k6B 9 72 3, 11, 43, 787

173k6B 39 712 173

181k6B 40 1072 181

191k6B 46 850912 191

193k6B 41 312 193

199k6B 46 2003292 199
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f deg f | B (bound for III) | all odd congruence primes

47Kk8B 16 | 192 47

59k8B | 20 | 297 59

67k8B | 20 | 297 67

71k8B 24 | 379 71

73k8B | 22 | 1972 73

74k8C 6 | 232 37, 127, 821, 8327168369

79k8B | 25 | 3072 79

83k8B 27 | 1019 83

87K8C 9 | 112 3,5, 7, 29, 31, 59, 947, 22877,
3549902897

89k8B 29 444912 89

97k8B 29 112.2772 97

101k8B 33 | 192.11503% 101

103k8B 32 753672 103

107k8B 34 172-4912 107

109k8B 33 232.2292 109

111k8C 12 1272 3, 7,11, 13, 17, 23, 37, 6451,
18583, 51162187

113k8B 35 6726412 113

115k8B | 12 | 372 3. 5, 19, 23, 572437,
5168196102449

117Kk8I 192 3,13, 181

118k8C 372 5, 13, 17, 59, 163,
3923085859759909

119k8C | 16 | 12832 3.7.13, 17, 109, 883, 5324191,
91528147213

121k8F 6 | 712 3. 11, 17, 41

121k8G 12 132 3, 11

121k8H 12 192 5, 11

125k8D 16 | 179 5

127k8B 39 592 127
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f deg f | B (bound for III) | all odd congruence primes

128k8F 4 112 1

131k8B 43 2412 - 8178382012 | 131

134k8C | 11 | 612 11, 17, 41, 67, 71, 421,
2356138931854759

137k8B 42 712 - 7490932 137

139k8B 43 47% . 892 . 10212 139

141k8C | 14 | 132 3,5, 7, 47, 4639, 43831013,
4047347102598757

142k8B 10 112 3, 53, 71, 56377,
1965431024315921873

143k8C 19 3072 3,11, 13, 89, 199, 409, 178397,
639259, 17440535 97287

143k8D 21 1092 3, 7, 11, 13, 61, 79, 103, 173,
241,
769, 36583

145k8C | 17 | 295872 5,11, 29, 107, 251623, 393577,
518737, 9837145 699

146k8C 12 36912 11, 73, 269, 503, 1673540153,
11374452082219

148k8B 11 192 3, 37

149k8B 47 11% - 409967892 149

43k10B 17 4492 43

47k10B 20 22132 47

53k10B 21 6732 53

55k10D 9 712 3, 5, 11, 251, 317, 61339,
19869191

59k10B 25 | 37 59

62k10E 7 232 3, 31, 101, 523, 617, 41192083

64k10K 192 3

67k10B 26 1912 - 6172 67

68k10B 7 832 3,7, 17, 8311

71k10B 30 11032 71
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f deg f | B (bound for III) | all odd congruence primes
19k12B 9 672 5,17, 19, 31, 571
31k12B 15 672 - 712 31, 13488901
35k12C 6 17 5, 7, 23,29, 107, 8609, 1307051
39k12C 6 732 3, 13, 1491079, 3719832979693
41k12B 20 543472 7,41, 3271, 6277
43k12B 20 2129692 43, 1669, 483167
47k12B 23 244692 17, 47, 59, 2789
49k12H 12 2712 7
Table 2: Conjecturally nontrivial III (mostly invisible)
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A counterexample to a conjecture of Selmer

Tom Fisher

Abstract

We present a counterexample to a conjecture cited by Cassels [Cal]
and attributed to Selmer. The issues raised have been given new sig-
nificance by the recent work of Heath-Brown [HB] and Swinnerton-
Dyer [SwD] on the arithmetic of diagonal cubic surfaces.

1 Introduction

Let E be an elliptic curve over a number field &k, with complex multiplication
by Z|w] where w is a primitive cube root of unity. Let K = k(w), so that
[K : k] =1 or 2 according as w € k or w & k. In his work on cubic surfaces,
Heath-Brown [HB| makes implicit use of the following statement.

Theorem 1.1 [f [K : k| = 2 and the Tate-Shafarevich group UI(E/k) is
finite, then the order of UI(E/K)[\/—3] is a perfect square.

We explain how this result follows from the work of Cassels [CalV], and
give an example to show that the condition [K : k] = 2 is necessary.

For the application to cubic surfaces, we only need a special case of the
theorem, namely that II[(E/K)[v/—3] cannot have order 3. This result, still
conditional on the finiteness of the Tate—Shafarevich group, has already ap-
peared in [BF] and [SwD]. In fact Swinnerton-Dyer [SwD] vastly generalises
Heath-Brown’s results. In the case [K : k] = 2 he proves the Hasse principle
for diagonal cubic 3-folds over k, conditional only on the finiteness of the
Tate-Shafarevich group for elliptic curves over k. The condition [K : k] = 2
is unnatural, and conjecturally should not appear. However, the counter-
example presented in this article suggests that, if we are to follow the methods
of Heath-Brown and Swinnerton-Dyer, then this condition on k is unavoid-
able.

In §2 we recall how it is possible to pass between the fields £ and K.
Then in §3 we give a modern treatment of the descent by 3-isogeny studied
by Selmer [S1] and Cassels [Cal]. In §§4-5 we recall how the conjectures of

119



120 A counterexample to a conjecture of Selmer

Selmer may be deduced from properties of the Cassels—Tate pairing. This
culminates in a proof of Theorem 1.1. Finally in §6 we present our new
example.

2 Decomposition into Galois eigenspaces

Let E be an elliptic curve over k£ with complex multiplication by Z[w]. The
isogeny [v/—3]: E — E is defined over K = k(w). But the kernel E[y/—3] is
defined over k. It follows that there is a 3-isogeny ¢: F — E defined over k
with E[y/—3] = E[¢]. Here E is a second elliptic curve defined over k, which
we immediately recognise as the —3-twist of E. The dual isogeny gg . E—FE
satisfies ¢ 0 & = [3] and bod= [3]. Our notation for the Selmer groups and
Tate-Shafarevich groups follows Silverman [Sil, Chapter X].

Lemma 2.1 If [K : k| = 2 then the ezact sequence
0— E(K)/V=3E(K) — SY"(E/K) — I(E/K)[V=3]—0 (1)
is the direct sum of the ezact sequences
0— E(k)/¢E(k) — S“/(E/k) — T(E/k)[¢] — 0 (2)
and

0— E(k)/6E(k) — SO(E/k) —s II1(E/k)[¢] — 0. (3)

Proof Since arguments of this type have already appeared in [BF], [N],
[SwD] and presumably countless other places in the literature, we will not
dwell on the proof. Suffice it to say that we decompose (1) into eigenspaces for
the action of Gal(K/k), and then use the inflation-restriction exact sequence
to identify these eigenspaces as (2) and (3). The observation that [K : k] = 2
is prime to deg ¢ = 3 is crucial throughout the proof. [

Remark 2.2 Each term of the exact sequence (1) is a Z/3Z-vector space
with an action of Gal(K/k). Thus each term is a direct sum of the Galois
modules Z/3Z and pus3. If we replace E by E in (1) we obtain the same exact
sequence of abelian groups, but as Galois modules the summands Z/3Z and
i3 are interchanged.
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3 Computation of Selmer groups

Let k be a number field. Let T[ag, aj, as] be the diagonal plane cubic
apTs + ay 3 + azay = 0 (4)

where ag, a;,ay € k*/k*3. Let E4 be the elliptic curve T[A, 1, 1] with identity
element 0 = (0 : 1 : —1). It is well known [St] that £, has Weierstrass
equation y? = 23 — 43242, An alternative proof of the following lemma may

be found in [CaL, §18].

Lemma 3.1 The diagonal plane cubic T'|ag, a1, as] is a smooth curve of genus
1 with Jacobian E 4 where A = agaias.

Proof There is an isomorphism T'[ag, a;, as] ~ E 4 defined over k(/«) where
« = aja3, given by

V(2o 21 1 29) — (agwp : oy a1/3a2x2).

The cocycle (1))~ takes values in the subgroup usz C Aut(E4) generated
by x; — w'z;. But since us acts on E,4 without fixed points, this action
belongs to the translation subgroup of Aut(E4). It follows that T'[ag, a1, as]
is a torsor under E4 and that F, is the Jacobian of T'[ag, a1, as]. O

Temporarily working over K = k(w) we note that E4 has complex mul-
tiplication by Z[w] where w: (g : 1 : x3) — (wzg : x1 : =) and that
Eall — w] = Ea[v/—3] is generated by (0 : w : —w?). So as in §2 there is a
map ¢ which gives an exact sequence of Galois modules

00— p3— Ey 2 Ey—0
where E 4 is the —3-twist of E,. Taking Galois cohomology we obtain an
exact sequence

0— Ea(k)/90Ea(k) — k*/k™> — H'(k, E4)[¢] — 0. (5)

The group H'(k, F4) parametrises the torsors under E4. We write Cy, for
the torsor under E4 described by « € k*/k*3. The proof of Lemma 3.1 shows
that

Tlag, a1, as] ~ Caq for A=]]a, and o =[] a (6)

where the products are over v € Z/3Z. Since T[ag, a1, as] ~ T[ay, az, ag] it
is clear that A € im¢. If F4 has Weierstrass equation Y?Z = —4AX? 4+ 73
then the 3-covering map T[ag, a1, as] — E4 is given by

(2o : 1 1 To) > (ToT1To : @175 — X : apwy).
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The Selmer group attached to ¢ is
SO(EL/k) = {a € k*/k* | Caa(ky) # 0 for all primes p}.

Since deg ¢ = 3 is odd we have ignored the infinite places. We write ¢, for
the local connecting map obtained when we apply (5) to the local field k,.
Then the condition Cy 4 (ky) # 0 may also be written o € imd,. Using (6) to
give equations for Cy , it is easy to prove

Lemma 3.2 Let k be a number field, and p a prime not dividing 3. Let o,
denote the ring of integers of k,. Then

6. — 0;/0’;3 if ordy(A) =0 (mod 3)
p (4) if ordy(A) #Z0 (mod 3).

If p divides 3 the situation is more complicated, although we still have
imd, C oy /0> if ordy(4) =0 (mod 3). (7)

If w € k, Tate local duality tells us that imd, is a maximal isotropic
subspace with respect to the Hilbert norm residue symbol

ke /K X ke [k3? — . (8)

The next lemma treats the case k = Q(w). This field has ring of integers
Z[w] and class number 1. The unique prime above 3 is 7 = w — w?.

Lemma 3.3 Let A € Z]w] be nonzero and cube-free. Then

(A, (L+A)/(1= 4))  if ordy(4) £0
imd, =4 (A, 1—-7%) if ord.(A) =0 and A # +1 (%)
(w(l+3a),1—7%) if A= +(1+ an®) for some a € Z|w].

Proof We recall [CF, Exercise 2.13] that k¥ /k*> has basis m,w,1 —72,1—7°
and that these elements define a filtration compatible with the pairing (8).
By Tate local duality it follows that im ¢, has order 9. So to prove the lemma
it suffices to prove the inclusions D. As always A € imd,, whereas (7) and
Tate local duality tell us that 1 — 73 € imd,. There is at most one more
element to find.

(i) Suppose ord,(A) # 0. If «a satisfies &« — a™' = A then T[4, a,a™!] is
soluble. Splitting into the cases ord,(A) =1 or 2 we find

4A/(1 - A% = A (mod 7).

Thus a = (1 + A)/(1 — A) provides a solution mod 7.
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(i) Suppose A =1+ an® for some a € Z|w]. If a satisfies A+ a+a ' =0
then T[A, a, a™!] is soluble. In view of the identity
(1+7°a) + w(l+ 3a) + w*(1 —3a) =0

we see that @ = w(1 + 3a) provides a solution mod 7*. O

4 Selmer’s conjectures

In this section we take k = Q, so that K = Q(w). We consider the elliptic
curves 4 and E4 over Q where A > 2 is a cube-free integer.

Lemma 4.1 If A > 3 then the torsion subgroups are

EA(Q)tors =0 and EA(Q)tors = Z/3Z

Proof See [St, §6] or [K, Chapter 1, Problem 7]. O

Lemma 2.1 gives a decomposition into Gal(K/Q)-eigenspaces
SV EA/K) = SO(E4/Q) @ SO(E4/Q). 9)
The following examples were found by Selmer [S1], [S2].
Example 4.2 Let A = 60. Lemmas 3.2 and 3.3 tell us that
SV (Eg/K) ~ (2,3,5) € K*/K*.

Then (9) gives S® (Eg/Q) ~ (Z/3Z)* and S(‘E)(EW/Q) = 0. But a 2-descent
[Cal, §15], [Cr| shows that Eg(Q) has rank 0. We deduce

II(Eso/Q)[3] ~ (Z/3Z)*.
Example 4.3 Let A =473. Lemmas 3.2 and 3.3 tell us that
SV (Byzs/K) ~ (11,1 — 6w, 1 — 6w?) C K*/K*>.

Then (9) gives S (FE,73/Q) ~ (Z/3Z)* and S@)(EM?,/Q) ~ 7Z/3Z. But a
2-descent [S2], [Cr]| shows that E473(Q) has rank 0. We deduce

II(Ess/Q)[¢] ~ Z/3Z and  I(Eus/Q)[¢] ~ Z/32Z.

Remark 4.4 According to the formulae and tables of Stephens [St], the
above examples have L(E4,1) # 0. So the claims rank F4(Q) = 0 could
equally be deduced from the work of Coates and Wiles [CW].
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Example 4.2 tells us that each of the curves

T[3,4,5] : 3z +4a3 + bay =
|0 a3+ 323 + 203
|0 a3+ 423 + 1523
]: af+5x + 1223 =

I
oo oo

T[1,3,2
T[1,4,1
T[1,5,1

5)
0
: (10)
2

is a counterexample to the Hasse Principle for smooth curves of genus 1
defined over Q. Selmer proves this without the need for a 2-descent. Instead
he shows that the equations (10) are insoluble over Q by writing them as norm
equations. As Cassels explains [Cal, §11] this is equivalent to performing a
second descent, i.e. computing the middle group in

EA(Q)/0EA(Q) C 6S®(E4/Q) C S (EA/Q). (11)

In fact Selmer’s calculations suffice to show that III(Esy/Q)(3) ~ (Z/3Z)>.
In other words II(Eg/Q) does not contain an element of order 9. More
recent work of Rubin [M] improves this to III(Fg/Q) =~ (Z/37Z)>.

Selmer also gave practical methods for computing the two right hand
groups in

Ea(Q)/9EA(Q) C 6SP(EA/Q) C SW(EA/Q). (12)

Following Stephens [St] we write g; + 1, A} + 1, A\; + 1 for the dimensions of
the Z/3Z-vector spaces (11) and go, \j, A2 for the dimensions of the Z/3Z-
vector spaces (12). Trivially we have 0 < g1 < A} < A, 0 < g < A, < Ay
and rank £4(Q) = ¢1 + ¢g2. Based on a large amount of numerical evidence,
Selmer [S3] made the following

Conjecture 4.5 Let A > 2 be a cube-free integer. Let E4 be the elliptic
curve 23 + > = Az3 defined over Q. Then

Weak form The second descent excludes an even number of generators, i.e.

A1 = A (mod 2) and Ay = N, (mod 2).

Strong form The number of generators of infinite order for EA(Q) is an
even number less than what is indicated by the first descent, i.e.

)\1 + )\2 =0 + g2 (rnod 2)

For A = 473, Selmer found \; = X} = Ao = A, =1 yet g = go = 0. He
was thus aware of the need to combine the contributions from ¢ and ¢ in the
strong form of his conjecture.
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Remark 4.6 In Heath-Brown’s notation [HB| we have
r(A) =rank F4(Q) = g1 + g2 and  s(A) = A\ + Xs.

By (9) the order of SV=3)(E,/K) is 33+ and in fact it is this relation
that Heath-Brown uses to define s(A). Naturally he writes the strong form
of Selmer’s conjecture as r(A) = s(A) (mod 2).

Now let k£ be any number field. Conjecture 4.5 is equivalent to the case

k = Q of the following

Conjecture 4.7 Suppose that A € k* is not a perfect cube and let E5 be the
elliptic curve z3 4+ y®> = Az defined over k. Then

Weak form The index of the subgroup ¢(ILL(E4/k)[3]) C LIL(EA/k)[¢] is a
perfect square. The same is true for ¢(II(E4/k)[3]) C HI(EA/k)[a]

Strong form The order of IIL(E4/k)[¢] times that of III(E 4 /k)[¢] is a per-
fect square.

In the next section we recall how Conjecture 4.7 follows from the work of
Cassels, the strong form being conditional on the finiteness of III(E4/k).

5 The Cassels—Tate pairing

Let E be an elliptic curve over a number field k. For ¢: E' — E’ an isogeny of
elliptic curves over k we shall write ¢: £ — E for the dual isogeny. Cassels
[CalV] defines an alternating bilinear pairing

(,): I(E/k) x IL(E/k) — Q/Z (13)
with the following nondegeneracy property.

Theorem 5.1 Let ¢: E — E’ be an isogeny of elliptic curves over k. Then
x € HI(E/k) belongs to the image of ¢: WI(E'/k) — HI(E/k) if and only if
(z,y) =0 for all y € II(E/k)[¢].

Proof This was proved by Cassels [CalV] in the case ¢ = [m] for m a
rational integer. The general case follows by his methods and is explained in
[F]. O

The pairing was later generalised to abelian varieties by Tate, and so is
known as the Cassels—Tate pairing. The most striking applications in the
case of elliptic curves come from the following easy lemma.
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Lemma 5.2 If a finite abelian group admits a nondegenerate alternating bi-
linear pairing, then its order must be a perfect square.

The weak form of Conjecture 4.7 is a special case of

Corollary 5.3 Let ¢: E — E' be an m-isogeny of elliptic curves over k.
Then the subgroup ¢(LLL(E'/k)[m]) C II(E/k)[¢] has index a perfect square.

Proof According to Theorem 5.1 the pairing (13) restricted to III(E/k)[¢]
has kernel ¢(ILI(E’/k)[m]). We are done by Lemma 5.2. [
Let us assume that III(E/k) is finite. So by Theorem 5.1 and Lemma 5.2

the order of III( £'/k) is a perfect square. If ¢: E — E’is an isogeny of elliptic
curves over k then the same conclusions will hold for E’. We define

( )o: I(E/k) x T(E'[k) — Q/Z;  (z,y) = (pz,y) = (z,0y)  (14)

where the equality on the right is [CaVIII, Theorem 1.2]. The strong form of
Conjecture 4.7 is a special case of

Corollary 5.4 Let ¢: E — E' be an isogeny of elliptic curves over k. If
II(E/k) is finite then the order of UI(E/k)[¢] times that of TII(E'/k)[¢] is

a perfect square.

Proof According to Theorem 5.1 the left and right kernels of ( , ), are

~

II(E/k)[¢] and III(E’/k)[¢]. We obtain a nondegenerate pairing

~

I(E/k)/M(E/k)[¢] x TL(E'/k)/IL(E"/k)[¢] — Q/Z.

We deduce that these quotients have the same order and are done since
III(E/k) and TI(E’/k) each have order a perfect square. [J

Another well known consequence is
Corollary 5.5 Let E be an elliptic curve over k whose Tate-Shafarevich

group is finite, and let m be a rational integer. Then the order of III(E/k)[m)
is a perfect square.

Proof According to Theorem 5.1 the kernel of ( , ), is II(E/k)[m]. We
obtain a nondegenerate alternating pairing

HI(E/k)/TL(E/k)[m] x LL(E/k)/TL(E/k)[m] — Q/Z.
We apply Lemma 5.2 to this pairing and are done since III(E/k) has order a

perfect square. [

Remark 5.6 We could equally deduce Corollary 5.4 from Corollaries 5.3
and 5.5.
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Proof of Theorem 1.1 Let E be an elliptic curve over k£ with complex
multiplication by Z[w] and suppose that [K : k] = 2. Lemma 2.1 tells us that

[I(E/K)[v=3] ~ IL(E/k)[¢] © LI(E/k)[d)].

Assuming II(E/k) is finite, Corollary 5.4 shows that the group on the right
has order a perfect square. So the group on the left has order a perfect square,
and this is precisely the statement of Theorem 1.1. [

In the first of his celebrated series of papers, Cassels [Cal] defines a pairing
SWV=3)(E,/K) x SW=3)(E,/K) — ps. It is of course a special case of the
pairing (13). He uses it to prove the weak form of Conjecture 4.7 in the case
[K : k] = 1. However in the introduction to the same paper he misquotes the
strong form of Selmer’s conjecture. The statement he gives is equivalent to

o If [K : k] =1 then the order of III(E4/K)[v/—3] is a perfect square.

It is this statement to which we have found a counterexample. It is possible
that Cassels was misled by earlier work of Selmer at a time when he did not
appreciate the need to combine the contributions from ¢ and ¢ in the strong
form of his conjecture.

Remark 5.7 It is tempting to try and prove Theorem 1.1 also in the case
[K : k] = 1 by imitating the proof of Corollary 5.5. However the isogeny
[v/=3] has dual [—+/—3] and this extra sign means that the pairing (, ) =3
is symmetric rather than alternating. Lemma 5.2 does not apply.

6 A new example

In this section we take K = Q(w). Let FE4 be the elliptic curve z® +y3 = A23.
We aim to find A € K such that the order of III(E,/K)[v/—3] is not a perfect
square. As in Example 4.3 our method is to compare a 3-descent with a 2-
descent. The form of the curves £4 makes the 3-descent easy. We use the
results of §3 to compute the Selmer group S&V=3(E,/K). For the 2-descent
we would like to use John Cremona’s program mwrank [Cr]. But mwrank is
written specifically for elliptic curves over Q, whereas Theorem 1.1 tells us
that there are no examples of the required form with A? € Q. Fortunately
we were able to use a program of Denis Simon [Sil], [Si2], written using the
computer algebra package pari [BBBCO)], that extends Cremona’s work on
2-descents to general number fields (in practice of degrees 1 up to 5).

We consider all cube-free A € Z[w] with A? ¢ Q and Norm(A) < 150. We
ignore repeats of the form +o(A) for ¢ € Gal(K/Q). In all 123 cases a calcu-
lation based on Lemmas 3.2 and 3.3 shows that S(V=3)(E,/K) is isomorphic
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to either Z/3Z or (Z/3Z). In the 98 cases where S&V=3)(E,/K) ~ Z/3Z
it follows immediately that rank F4(K) = 0. In the remaining 25 cases we
run Simon’s program. For 20 of these curves the program exhibits a point of
infinite order. Since E4(K) has the structure of Zw]-module, we are able to
deduce that rank F4(K) = 2. The remaining 5 cases are

A=40B+"Tw), £(9 +w), £(12+ 5w), £(6 + 13w), £(13 + Tw)

and their Galois conjugates. In each of these cases Simon’s program reports
that rank £4(K) = 0. Reducing modulo some small primes we find E4(K) =~
Z/3Z. Thus

I(EA/K)[v—3] ~ Z/3Z.

For the remainder of this article we restrict attention to the first of these
examples, namely A = 3 + 7w, and give further details of the descent calcu-
lations involved. In particular we establish the counterexample of the title in
a way that is independent of Simon’s program.

We begin by checking the above computation of S&V=3)(E,/K) for A =
3 + Tw. Since (A) is prime, Lemma 3.2 tells us that

SV=(EL/K) C (w, 3+ Tw). (15)

We check the local conditions at the primes (7) and (A) above 3 and 37
respectively.

e Since 37 =1 (mod 9) we know that w is a cube locally at (A).

e Lemma 3.3 gives imd, = (A, 1 —73) C K*/K?3. Since A = w — 73 it is
clear that w belongs to this subgroup.

It follows that equality holds in (15) as required.

Given the provisional nature of Simon’s program we have taken the liberty
of writing out the 2-descent for A = 34 7w in the style of Cassels [CaL, p. 72—
73]. The curve E4 has Weierstrass form

Y?= X3 —2'33(3 4+ Tw)>. (16)

The 2-descent takes place over the field L = K(§) where §° = 4(3 + Tw).
According to pari [BBBCO]!, L has class number h = 3, and fundamental
units

m = (—=7—3w)+(—3—2w)d+ (-2 +w)d?/2
e = (=7—3w)+ (2 —w)d+ (3 +2w)d?/2.

!These calculations were performed using Version 2.0.20 (beta)
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Furthermore pari is able to certify these results, independent of any conjec-
ture. We have chosen n; and 7, to be K-conjugates. They have minimal
polynomial

2% + (21 + 9w)2® + (102 — 165w)x — 1.

If (X,Y) = (r/t? s/t3) is a solution of (16), with fractions in lowest terms,
then a common prime divisor of any two of
r— 3022, r—3wdt? r— 3weit?

must divide 2(1 — w)(3 + Tw). Since 2, (1 — w), (3 + Tw) ramify completely,
r — 36%? must be a perfect ideal square. Since h is odd it follows that
S@(E/K) is a subgroup of (—1,n;,15) C L*/L*?. We claim that S®(E/K)
is trivial. By considering norms from L to K, it suffices to show that the
equation

r—36%* =na®  with n =0y, my or 1/(nin2)

is insoluble for r,t € K and a € L. The action of Gal(L/K) shows that
we need only consider the case n = n;. Put o = u + vé + wd?. Equating
coefficients of powers of  we obtain

0 = (=3—2w)u?+ (—14 — 6w)uv + (—26 — 36w)v?
+ (=52 — T2w)uw + (40 — 104w)vw + (—148w)w?

=3t = ((-2+4w)/2)u*+ (=6 — dw)uv + (=7 — 3w)v?
+ (=14 — 6w)uw + (=52 — 72w)vw + (20 — 52w)w?.

On putting

u = (—8+6w)e+ (—6—34w)f + (—20 + 15w)g
v = (4 —4dw)e+ (12 +4w)f + (=10 — 11w)g
= (I-wle+1+4w)f+(2—-2w)g

in the first equation, it becomes
0= (3+7w)g* — 16ef.
Hence there are m,n such that
e:fig=m?: (34 Tw)n?: 4mn.
On substituting into the second equation, we get

=3t2 = 2(—1—4dw)m?* 4 8(—4 + 3w)m3n + 4(21 + 12w)m?n?
+ 8(4 — 3w)mn® 4+ 2(—33 — 40w)n*.

But this is impossible over the 2-adic completion of K. Hence S®(E4/K) is
trivial and rank F4(K) = 0 as claimed.
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Linear relations amongst sums of two squares

D.R. Heath-Brown

1 Introduction

It is well known that there are infinitely many sets of three distinct primes
in arithmetic progression. This may be proved by an easy adaptation of
Vinogradov’s treatment of the ternary Goldbach problem. More generally
for, any nonzero integers A, B, C', not all of the same sign, one can show the
existence of infinitely many triples of primes pi, po, p3 satisfying the linear
relation

Ap1 + sz + Cp3 =0

subject to the natural condition that A+ B+ C should be even. Balog [1] has
made important progress on the question of linear relations involving more
than 3 primes, but nonetheless it remains an open problem as to whether
there are infinitely many sets of 4 distinct primes in arithmetic progression.

Many open problems involving primes have potentially easier relatives
involving sums of two squares. Thus one might ask whether or not there are
infinitely many arithmetic progressions of 4 (or more) distinct integers, each
of which is a sum of 2 squares. This is trivial. The numbers

(n—=8°+m—-172 nm-="7>*+n+4)?> n+7)°+(n-—4)>
and (n+8)*+ (n+ 1)
form an arithmetic progression with common difference 12n. In this paper
we shall address the question of the frequency of such progressions. We shall

count the sums of two squares with appropriate multiplicity, so that we shall
consider the sum

> r(La(3)r(La(x))r(Ls(x))r(La(x)), (1.1)

where R is a suitable subset of R? and the linear forms L; are given by

Li(x) = xq, Ly(x) = x1 + 29,

1.2
Ls(x) = x1 + 29, Ly(x) = x1 + 3z, (1.2)

133
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where x denotes the vector (x1,23). The corresponding problem for arith-
metic progressions of length 3 is readily handled by the circle method. How-
ever for progressions of length 4 it would appear that one would require a
version of the ‘Kloosterman refinement’ for a double integral

/01 /01 S(a)*S(—2a + B)2S(a — 28)%S(B)*dadp.

Since research to date has failed to provide such a technique we shall use a
rather different approach.

We shall consider a general set of linear forms L4, ... , Ly. However we will
find it convenient to work with linear forms which are suitably normalized.
Moreover we shall require the region R in which we work to satisfy certain
basic conditions. We therefore introduce the following hypothesis.

Normalization Condition 1 (NC1) We assume:
(i) No two of the forms Ly, ..., Ly are proportional.
(ii) We have
R=XRY ={xcR?: X 'xc RV},

where R C R? is open, bounded and convex, with a piecewise continu-
ously differentiable boundary, and where X is a large positive parameter.

(iii) We have Li(x) > 0 for 1 <i < 4 and for all x € R,
(iv) We have

Lyi(z1,x9) = Lo(x1, 22) = La(x1,22) = Ly(21,22) = 21 (mod 4).

We have imposed the final condition in order to simplify our analysis.
While this may seem a little arbitrary, it can be viewed as an analogue of
conditions (ii) and (iii). One can think of (ii) and (iii) as requiring x to
lie in an open neighbourhood of a point y for which each L;(y) is a sum
of two squares. The 2-adic analogue of this real condition on the domain
of summation would involve fixing a 2-adic vector y such that each value
L;(y) is a sum of two 2-adic squares. We would then require x to lie in an
appropriate 2-adic neighbourhood of y. If one imposes such a condition then
it can be shown that there is a suitable change of variables which produces
forms satisfying (iv). However we shall not pursue this here.

In view of condition (iv) we shall find it convenient to write

Ri={x€eR:z; =1 (mod4)},
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so that our problem is to estimate

> r(La())r(La(x)r(Ls(x))r(La(x)) = S, (1.3)

XER4
say.
From now on, all order constants will be allowed to depend on the set
of forms Li,...,Ls, and on the region R®. Our first result is then the
following.

Theorem 1 For a set of forms satisfying NC1, we have
S = 4nt meaSRH o, + O(X?(log X)~"?(loglog X )'*/%) (1.4)
p=>3
where meas denotes Lebesgue measure, and

1 + log log 2

~ 0. 1.
002 0.08607 (1.5)

’]7 =
Here the product [ o, is absolutely convergent and

op = Bp{1 = x(p)p™"}*,
where x is the nonprincipal character modulo 4. The factor E, is given by

o0

E,= > Xt t p ot ph)
a,b,c,d=0

where p(dy,ds, ds,dy) is the determinant of the lattice
{xeZ’:d;| Li(x), 1 <i<4}.

The implied constant in (1.4) may depend on the set of forms Ly, ... , Ly, and
on the region R,

It may be of interest to note that we can evaluate FE, explicitly in many
cases. For 1 <i < j < 4, let A;; be the determinant of the pair of forms
L;, L;, and let A be the product of the various A;;. Then if p { A, we can
find E, by a routine, if lengthy, calculation. The result is that

E, - {(1 - %)72(1 - %)72(1 + % + 1% + ]% + [%) if x(p) =1, 16)
1-m) 1= 1= if y(p) = —1.

It follows in particular that [] o, = 0 if and only if there is some prime p | A
with x(p) = —1 for which E, = 0.
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It is perhaps worth observing that a notional application of the Hardy—
Littlewood circle method to the system

Li(l’l,l'g) :u?—i—vf, (1 §Z§4),

consisting of 4 equations in 10 variables predicts exactly the main term given
in (1.4). In particular, the singular integral (the density for the real valuation)
is 7 meas R, and the 2-adic density

lim #{x,u,v (mod 2") : z; =1 (mod 4), L;(x) = u} +v; (mod 2")}

n—oo

is 4.

To apply Theorem 1 to arithmetic progressions of length 4 we note that if
4 integers in arithmetic progression are each a sum of two squares, then the
common difference must be a multiple of 4. Take

R = {(331,:1:2) eR?: 1,22 >0, 11 + 1229 < X}
and
Ll(X) = T, LQ(X) =x; + 4132, Lg(X) =x; + 8132, L4<X) =x; + 1232‘2

Since r(2n) = r(n) we see that
Y. rlar®)r(erd
=Y. Y L) (La())r(La(x)r(La(x)).

k' 2k(zy,20)ER
2tz

where the sum over a, b, ¢, d is restricted to arithmetic progressions of length
4. Now if we set

Ru(k) = {(z1,22) € Z* : 2"(21,25) € R, z1 =1 (mod 4)},

we see that

a<b<c<d<X

=X P(Ly (%)) (Lo ()7 La(x))r (Lo ().

(z1 ,1‘2)6'R4 (k‘)

We have sufficient uniformity in Theorem 1 to sum over k. Since meas R =
X?2/24 and Y ;" 4% = 4/3, this therefore yields the asymptotic formula

Z r(a)r(b)r(c)r(d) = CX?* 4+ O(X*(log X)~"?(log log X)'*/4),

a<b<lc<d<X
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Table 1
X S(X) S(X)/C’X2
1000 21833216 21.833 ...
2000 91315200 22.828 ...
4000 381608960 23.850 ...

8000 1554144256 24.283 ...
16000 6308194304 24.641 ...
32000 25428982272 24.832 ...
64000 | 102495412736 25.023 ...

128000 | 411816625664 25.135 ...

where the sum over a, b, ¢, d is restricted to arithmetic progressions of length
4. Since meas R = X?/24, the constant C' takes the form

with E, given by (1.6) for p > 5. Moreover one may compute that
27
80"

Since progressions with d = X clearly contribute O(X'*¢) for any & > 0
we may summarize our conclusion as follows.

Es

Corollary 1 There is a positive constant C such that
Z r(a)T(b)T(C)’r(d) = C'XQ + O(XZ(logX)—ﬂ/Q(log log X)15/4),
a<b<c<d<X

where the sum over a,b, c,d is restricted to arithmetic progressions of length
4. The constant C' has the approximate value 25.3039. . ..

The corollary is illustrated by Table 1, in which

SX)= > r@r@®r)r(d).

a<b<c<d<X

The general problem as formulated above is relevant to a very different
question. The simultaneous equations

Vo {L1(x1,x2)L2(m1,$2) = a3 + o}

L3(z1, x9) La(21, T2) = 2% + 22

(1.7)
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will, in general, define a 3-fold in P°. We can estimate the number of rational
points on this variety as x runs over a region R by examining the sum

> (LX) La(x))r(Ls(x) La(x))-

XER

Varieties of the type (1.7) are of considerable interest, since they may fail
to satisfy the Hasse Principle. Thus they may have no nontrivial rational
points even though they have nonsingular points over R and each of the
p-adic fields @Q,. For general pairs of quadratic forms this observation is due
to Iskovskih [6]. For varieties of the particular shape (1.7) the phenomenon
is illustrated by the example

T1Ty = 15 + 775, (371 + 4a9)(8zy + 11a9) = 27 + 2, (1.8)

as we proceed to show. There are nonsingular points with z; = 25 = 1 in
R and in Q, for every prime p other than p = 7 and p = 19. Similarly
for these two exceptional fields there are nonsingular points with z; = 2
and xo = 1. We proceed to assume that the equations (1.7) have a nonzero
integral solution xy,...,x¢. In particular it follows that z; and x5 cannot
both be zero. For any d € N, if nd? is a sum of two squares, then n is also a
sum of two squares. Thus we may assume, without loss of generality, that
and o are coprime. Moreover, we may change the signs if necessary, so as to
suppose that at least one of x1 and x5 is positive. Then, since their product
is a sum of two squares, we see that the other must be nonnegative. It follows
firstly that each of x1 and x5 is a sum of two squares, and secondly that each
of 3x1 + 425 and 81 + 11z, is strictly positive. Now

‘ 3 4

8 11‘:1’

so that 3z; + 425 and 8z + 1125 must be coprime. Thus both 3z, + 4x5 and
8x1 + 11xo will be sums of two squares.

Now if z1 is odd, then z; = a®> +b*> = 1 (mod 4), so that we must have
3x1 + 4x9 = 3 (mod 4). Thus 3x; + 4x2 cannot be a sum of two squares.
Similarly if x; is even, then xs must be odd, and hence x5 = 1 (mod 4), since
Ty is a sum of two squares. However this means that 8x; + 112y = 3 (mod 4)
so that 8x; + 11x5 cannot be a sum of two squares. This completes the proof.

Even when the variety does possess rational points, it may fail to satisfy
the weak approximation principle. In general, a variety V is said to satisfy
the weak approximation principle if its rational points are dense in the adélic
points. To put this in concrete terms, for our variety (1.7), suppose we
are given a real point (ng), . ,ng)) and p-adic points (x§p>, . ,wép)) for
a finite number of distinct primes p, all lying on the variety (1.7). The weak
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approximation principle then asserts that, for any € > 0, we can find a rational
point (xy,...,x6) on (1.7) satisfying the simultaneous conditions

7 — 2V < and |z — 2P|, <e, (1<i<6)

for each of the primes p.

However it can happen that V fails to satisfy even the real condition. In
particular the variety may have two real components, on one of which the
rational points are dense, and on the other of which there are no rational
points. This is demonstrated by the example

11Ty = 15 + 775, (w1 — 22) (31 — 8x3) = 72 + 7, (1.9)

due to Colliot-Thélene, Coray and Sansuc [2]. There is clearly a rational point
with 1 = 1 and x5 = 2. Moreover the real points belong to two components,
namely those with xo/27 > 1 and 0 < x9/27 < 3/8. (We regard points with
x1 = 0 as being of the first type.) The special feature of this example is that
all rational points lie on the first of these components. To prove this we shall
suppose we have an integer point for which 0 < x9/x; < 3/8, and derive a
contradiction. As with (1.8) we may assume that x; and x are coprime and
nonnegative, so that they must both be sums of two squares. Our assumption
on the size of xs/x; implies that ;7 — x5 and 3x; — 8z are both nonnegative.
Since

3 8|~

5
the highest common factor of 7 — x5 and 3x; — 8x5 must be either 1 or 5.
Thus, since the product of the linear forms z; — 29 and 3x; — 8 is a sum of
two squares, they must each be a sum of two squares.

Now if z1 is odd, then z; = a®> +b* = 1 (mod 4), so that we must have
3x1 — 8xy = 3 (mod 4). Thus 3z; — 8xs cannot be a sum of two squares.
Similarly if 2 || 27 we will have 21 = 2 (mod 8) and 321 — 8z = 6 (mod 8), so
that 3z1 — 8z is not a sum of two squares. Finally, if 4 | 21, then z5 is odd,
and we will have 25 = ¢ + d?> = 1 (mod 4). In this case x; — 2o = 3 (mod 4)
and x1 — x5 cannot be a sum of two squares. This establishes our claim.

In general there is a heuristic expectation that the number of rational
points on a given variety which lie in a large region should be given by a
product of local densities. This is indeed the type of asymptotic formula that
the Hardy—Littlewood circle method provides, in those cases for which the
error terms can be successfully estimated. However when the rational points
on a variety are not evenly distributed amongst the admissible adélic points,
the entire rationale for this heuristic expectation breaks down. It is thus of
considerable interest to estimate the number of points on such a variety, and
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to compare the result with that predicted from the product of local densities.
This is what we shall do for the varieties (1.7).

We shall introduce the same type of normalization condition as before.
Specifically, we require the following;:

Normalization Condition 2 (NC2) We assume:
(i) No two of the forms Ly, ..., Ly are proportional.
(11) We have
R=XRO ={xeR?: X 'x e RO},

where R C R? is open, bounded and convex, with a piecewise continu-
ously differentiable boundary, and where X is a large positive parameter.

(iii) We have Li(x) > 0 for 1 <i <4 and for all x € R,
(iv) We have
Lyi(z1,x9) = Lo(x1,29) = vy (mod 4)
and
Ls(x1,29) = Ly(x1,29) = V21 (mod 4),
for appropriate v,V = *1.

In connection with condition (iii) we note that the equations (1.7) do not
require that L;(x) > 0. However, apart from O(X) points where some L;
vanishes, the solutions may be subdivided into regions in which each L; is
one signed. On each such region we can then replace L; by +L; as necessary,
so as to ensure that we have points with L;(x) > 0.

As with NC1, condition (iv) is imposed in order to simplify the exposition.
However it may be viewed, as before, as being the result of restricting x to a
suitable 2-adic region.

As an example, we note that the variety defined by (1.8) has a 2-adic point

xgo), e ,méo) with :17%0) = :1350) = 1. Theregion given by z; —z9 = :Ego)—xgo) =
(mod 4) is a 2-adic neighbourhood of the point x§°>, e ,xéo). For any point

in this neighbourhood we may write 1 = y; and zo = y; + 4ys to produce
the equations

y1(y1 + dy) = 23 + 272, (Tyy + 16y2) (19y, + 44y,) = 22 + 22 (1.10)

The linear forms now satisfy part (iv) of NC2.
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Similarly for the example (1.9) we have a 2-adic point with x&‘” =1 and
(0)

x5 =2, and we use the 2-adic region
Ty — 211 = mgo) - ngo) =0 (mod 8).

We thus write x1 = y; and zo = 2y; 4 8ys to produce the equations

yilyr +4y) = v3 +yi,  (y1 4+ 8y2)(13ys + 64yo) = x5 + 23, (1.11)

all of whose rational points we have shown to satisfy y,/y; > —1/8. Again
the linear forms satisfy part (iv) of NC2.

In view of part (iv) of NC2 it is natural to restrict consideration to the
case in which (x1, z5) lies in the set

Ry={x€R:z; =1 (mod 2)}.

Our principal result describing the number of rational points on the general
variety (1.7) is now as follows.

Theorem 2 Suppose NC2 holds. The local densities for the variety V with
equations (1.7), for the set Ry, are given by

Ooo =T’ measR, 09 =2

and
ap = (1= x(p)/p)°Ty(p), (p>3), (1.12)
where
T (p) = B — x(p) E®Y — x(p) B + EWY (1.13)
and
B = i X(p) T p(pt e p pr e ) (1.14)
@,B3,7,6=0

Here p(dy, ds,ds,dy) is as in Theorem 1. Moreover, when pt A we have

ap = (1+x(p)/p)*. (1.15)

If o, = 0 for any prime p then V' has no rational point with (1, x3) € Ro.
If o, # 0 for every prime p, then

> r(La(%) La(x))r(Ls(x) La(x)) = {1+ c}oo [ o + 0(X?).

XER2
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where
=) I Te)/Tw). (1.16)
plA, x(p)=-1
with
T.(p) = E®Y £ EOY £ E(M0) + B, (1.17)

Moreover, when p = —1 (mod 4) we have EZ(,“’U) >0, so that

IT_(p)| < T4(p).

We also have ES’O) = Eéo’l) =0 for any prime p = —1 (mod 4) not dividing
ApAszy.
If e = —1 then V' has no rational point with (x1,z3) € Ra.

Thus the factor 1 4+ ¢ measures the discrepancy between the true asymp-
totic formula and the Hardy—Littlewood prediction. Although we shall not
prove it here, we may remark that the sums 7% (p) are always rational num-
bers, so that the factor 1+ ¢ is a rational number in the range [0, 2].

We see that Theorem 2 establishes a local to global principle in the shape
of the assertion that if o, > 0 for every p, then there exist rational points on
V', providing that 1+ ¢ # 0. Moreover it is a standard fact that we will have
o, > 0 for any prime for which V' has a nonsingular p-adic point. In contrast,
our result does not give a full solution to the weak approximation problem,
since we are unable to restrict the variables x3, x4, 25, x¢ in (1.7). However,
we are able to control the variables x1, x5 by our method.

In fact it is known that the Brauer—Manin obstruction is the only obstruc-
tion to both the Hasse Principle and Weak Approximation, for varieties of
the form (1.7). Although this is not formally stated in the literature, it is
possible to use a descent argument to reduce the problem to one involving a
certain intersection of two quadrics in P, to which Theorem 6.7 of Colliot-
Thélene, Sansuc and Swinnerton-Dyer [3] may be applied. In particular it
follows that our condition 1 + ¢ > 0 must be equivalent to the emptiness of
the Brauer—-Manin obstruction for the Hasse Principle.

In the final section of the paper we shall investigate the examples (1.8)
and (1.9) more fully, as well as the variety

x1 (71 + 1225) = 23 + 27, (z1 + 4x9) (21 + 1625) = 22 + 7, (1.18)

for which we shall show that 0 < 1+¢ < 2.

We conclude this introduction by remarking that it should be possible
to replace the character y by any other nonprincipal real character. In-
deed one should be able to use different characters for each of the four
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linear forms in Theorem 1. In the same way, in Theorem 2 one would
take any two nonprincipal real characters xi, xo. One would then hope to
be able to replace the original expression r(L;(x)Ls(x))r(Ls(x)L4(x)) by
r1(L1(x)La(x))re(Ls(x)L4(x)), where

ri(m) = 42)@(771) (1=1,2).

dm

If one also imposed congruence restrictions on the values of the forms L;(x),
one would then be able to count the representations of L;(x)Ly(x) and
L3(x)L4(x) by individual genera of quadratic forms. However, while these
generalizations look plausible, we have checked none of the details, and make
no claim as to the results one might obtain.

2 The level of distribution

In this section we shall investigate the distribution of points x in subsets
of R4, subject to a set of simultaneous divisibility conditions d; | L;(x) for
1 < i < 4. Naturally, we shall only be interested in odd values of d;. If we
write d = (dy, dg, d3, dy), it is clear that

{XGZZ:di\Li(x), 1§i§4}:Ad,
say, is a lattice in Z2. We set
p(d) = det(Aa)
as in the statement of Theorem 1. We note that
p(d) = [Z* : Aq] | didadsd,. (2.1)

We shall consider convex regions R(d) C R for which R(d) is also the interior
of a simple, piecewise continuously differentiable closed curve. We will write
OR(d) for the length of the boundary curve defining R(d) and we set

Ry(d) ={xe€R(d): 21 =1 (mod 4)}.

Since R(d) € R C [—cX, cX]? for some constant ¢, by part (ii) of NC1, we
deduce that

OR(d) < 8¢X,

since R(d) is convex. We may now state our basic result on the level of
distribution of a set of linear forms ;.



144 Linear relations amongst sums of two squares

Lemma 2.1 Let ()1, Q2,Q3, Q4 > 2, and write

Q=max@Q; and V = Q1Q20Q3Qu.
Then there is an absolute constant A such that

meas(R(d))

1/2 A
1p(d) L (XV/2 4+ XQ+V)(logQ)”,

> ‘#(Ad NRu(d)) -

d;<Q;

where the d; run over odd integers.

A very similar result is proved by Daniel [4, Lemma 3.2], to which we refer
the reader for details. As in [4, (3.11)] we find that

#(Aq NR(A)) — mea;%(d)) < 87|2V(’d) ri< ‘le +1,

for some nonzero vector v € Aq with coprime coordinates, satisfying
lv| < det(Aq)Y2.

By (2.1) we then deduce that |v| < V1/2. A trivial modification of Daniel’s
argument yields

X
<L —+ 1L

V]

When none of the forms L;(v) vanish, we may estimate

Yoo T (2.2)

dy,d2,ds3,ds<Q

‘#(Ad A R(d)) — M‘

4p(d)

exactly as in [4, §3], giving a bound O(V*/2?(log Q)*). However if L;(v) = 0
for some 7 we must argue differently. (This situation does not arise in Daniel’s
work since he has an irreducible form f of degree k > 1, so that f(v) cannot
vanish.) Since v has coprime coordinates, there can be only two possibilities
for v for each value of i. Thus we will have |v| < 1, with a constant depending
only on the forms L;. Moreover, if L;(v) = 0 we then have 0 # L;(v) < 1
for j # 4. Thus d; may take any value up to @, while for j # ¢ there are only
O(1) available values for d;. It follows that vectors v for which some L;(v)
vanishes will contribute O(Q);) to (2.2). This is sufficient for Lemma 2.1.
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3 The leading term

In this section we shall examine the dominant contribution to the sum S given
by (1.3). We shall use the fact that

r(n) =43 x(d)

dln
for any positive integer n, where

+1 ifd=1 (mod 4),
x(d)=4¢ -1 ifd=3 (mod 4),
0 ifd=0 (mod 2).

Since L;(x) > 0 and L;(x) =1 (mod 4) in our situation, we have

d|Li(x) d|Li(x) d|Li(x)

d<x1/2 d>Xx1/2

=4 ) x(d+4 Y x(@)
d|L;(x) Li(x)=ed
d<X1/2 d>X1/2

=4 ) x(d)+4 Y xle)
d|L;(x) L;(x)=ed
d<x1/2 d>x1/?

=4 Y x(d+4 > x(e
d|Li(x) e|Li(x)
d<x1/2 Li(x)>eX1/?

= 4A; (Li(x)) + 4A-(Li(x)), (3.1)

say. We shall use this decomposition for the terms corresponding to Ly, Lo, L3,
and for L, we shall write similarly

r(La(x)) = 4B1(La(x)) + 4C(La(x)) + 4B_(La(x)),
where

Bi(m)=) x(d), Cm)= Y  x(d),

dlm dlm
A<y <
< Y <d<X/Y (3.2)
and B_(m)= Z x(e).
elm

m>eX/Y
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Here Y < X'/2 is a parameter to be specified in due course. For the sums
A_ and B_ we note that if x is confined to a region R satisfying part (iii)
of NC1, then the variables e which occur in the defining sums will satisfy
e < X'/? and e € Y in the two cases respectively.

We now write

S= Y r(La(x))r(La(x))r(Ls(x))r(La(x))

in the form
45, +45_ 4+ 4S),

where

Si= Y r(Li(x))r(La(x))r(Ls(x)) B=(La(x))

XERy

and S = Y r(L1(%))r(La(x))r(Ls(x))C(La(x)). (3.3)

XER4

For the sums S; we shall use the decomposition (3.1) to produce a total of 8
subsums

Seaaa= Y Ap(Li(x)As(La(x))As(Ls(x))Bi(La(x)),

XERY

so that
S=4S+4") Sizis. (3.4)

We shall see later that Sy is negligible. In this section we consider the remain-
ing terms. Each of the sums Sy 1 1 4 is treated in the same way, so we shall
consider the case of Sy , _ _, which is typical. We shall write Q; = Qy = X'/2,
and take

Qg = C3X1/2 and Q4 = C4Y,

with suitable constants c3 and ¢4, so that the variables e in the sums for
A_(L3(x)) and B_(L4(x)) will satisfy e < Q3 and e < @4 respectively. With
this convention, the definitions of A and B4 show that

Sy4 - = Z X (dydadsdy)# (Aa N Ra(d)),
d;<Q;

where

R(d) = {x € R: Ly(x) > ds X'/?, Ly(x) > dsX/Y}. (3.5)
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Since these sets are convex, we conclude from Lemma 2.1 that

Sif__ = = Z (dydydsdy)p~t(d) meas(R(d))
d<Qz

FO{XTYY2 1 X312 4 X312V } (log X)4).

Since Y < X2, the error term is O(X"/*Y/?(log X)*), which will be ac-
ceptable if we take

Y = X2(log X) 72472, (3.6)
as we now do. Thus for the general sum we have
1 -1 2 -1
Siass =7 > x(didadsdy)p' (d) meas(R(d)) + O(X*(log X)™'). (3.7)
d;<Q;

We now consider the sum

Z X(d1d2d3d4)lfl(d)a (3.8)

A;<d;<B;

where B; < 2A4; for 1 < i < 4. We may suppose without loss of generality
that

Ay > Ay, Ag, As. (3.9)

We shall require some information on the function p(d). By the Chinese
Remainder Theorem there is a multiplicative property

p(dlel, c. ,d4€4) = p(dl, e ,d4)p(€1, c. 764), (310)

whenever
th(d1d2d3d4, 61626364) =1.

For most primes it is easy to handle the function p explicitly. As in the
introduction, we write A for the product of the 6 possible 2 x 2 determinants
A;j formed from the various pairs L;, L; of forms. Thus if p is a prime which
does not divide A, then for any pair i # j, we see that p | L;(x), L;(x) implies
p | x. Hence if

€i

p | Li(x) (1<i<4) (3.11)

for a prime p ¥ A, and €o(1) = €4(2) = €o(3) = €o(4) fOr some permutation o,
then (3.11) is equivalent to

pea(Q) ‘X and peg(n*ea(z) ‘ LU(I)(p*%(z)X>.
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Thus

p(p, ... p%) = peeteo@  p T A. (3.12)

For primes p | A we conclude similarly that
p(p, ... p) >a ploteee, (3.13)
Turning to (3.8) we set f = dydadsA, and we write dy = gh, where
g= H p¢, and (h,f)=1.
p° |l da, plf
Then

Y x(d)pH(d) =

Ay<ds<By

> @ drdadsg) DD ()11 L),
9<B4 A4/9<h<Bai/g
(h,f)=1

In view of (3.12) we see that the inner sum is

Yoo xW/h=)_ud) Y x(h)/h

Ay/g<h<Bai/g d|f Ay/g<h<Bai/g

(h,f)=1 dh
= pldxd)/d > x(i)/i.
dlf Ag/gd<j<Bas/gd

However

> oxG)/i<

J<j<K

so the sum above is O(gfA; "), for any € > 0.
It follows that (3.8) is

< ATY DD (dadads) gp (dy, da, ds, ). (3.14)

dy,d2,d3 g<Ba

We shall estimate this sum by Rankin’s method. For any fixed 0 > 0 we have
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dE < d < APd;°
providing that ¢ is small enough. Similarly we have
1< Ajg°.

It follows that

Z Z d1d2d3 d17d27d37 )

d1,d2,d3 g<By

< (A A AzAN? D D" g (dydads) p(dy, dy, ds, g) !

d1,da, ds g<B4

(A A2A3A4 Z Zg d1d2d3 (d17d27d3ag)_17 (315)

di,d2,d3=1 g=1

where g¢ is still restricted to integers composed solely of prime factors p di-
viding f = Adydads. In view of the multiplicative property (3.10) we can
factorize the 4-fold sum on the right. For each prime p we write d; = p?, dy =
p°, d3 = p° and g = p?, so that the corresponding factor is

> pt e o gt pt ph) 7 (3.16)
a,b,c,d=0

subject to the condition that if p { A then there are no terms with a = b =
¢ =0 and d > 0. For those primes p which do not divide A the above sum is
14+ O(X,), where ¥, is a sum of the form

i Z ipd(a+b+c+d)6p<pa’ pb’pc’ pd)fl
a=1 0<b,c<a d=0
< i Z ipd—(a+b+c+d)5p—a—d

a=1 0<b,c<a d=0

-5 {Zp—eé} _ O(S(p—l—é)7

by (3.12). The product of all such factors (3.16) is therefore Os(1). For the
remaining primes we use (3.13) to show similarly that (3.16) is Osa(1). The
4-fold sum in (3.16) is therefore bounded, and on choosing § = 1/10, say, we

see from (3.9) that (3.15) is O(Ai/5), and hence, from (3.14) that

Z x(dydadsdy)p~t(d) < (A1 Ay AzA,) Y20
Ai<di<B;
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We may now use repeated summation by parts to show that

> X(didadsds)p™" (d)(drdadsds) ™ = S(8) + O((min A;) ") (3.17)

d;<A;

uniformly for § > 0, with

[e.9]

SO) = Y X(didadsdy)p™!(d)(didadsds) ™"
dy,d2,ds,ds=1

The sum S(0) is absolutely convergent for such J. Indeed by (3.10) it suffices
to consider the behaviour of the various Euler factors. For each prime the
corresponding factor is

o0

Z X<p)a+b+c+dp—(a+b+c+d)5p(pa’pb7pc,pd)—1 _ Ep((;), (318)
a,b,c,d=0

say. We write this in the form 1 + ¥ where
(o0 [o¢]
Y < Z Z p—a—(a+b+c+d)6 <<p_1_5,
a=1 b,c,d=0

by (3.12) and (3.13). This suffices to ensure absolute convergence for § > 0.
Similarly, when p { A we have p(p,1,1,1) = p by (3.12), whence

E,(6) =1+4x(p)/p™ "+ 0(p™?) = {1 —x(p)/p" "’} {1+ 0},

uniformly for § > 0. It follows that we can write S(6) = L(1+ 8, x)*F(1 + )
where

F(s) = [ [ Eo(s = {1 = x(p)p—}* (3.19)

is absolutely and uniformly convergent for Re(s) > 1. This allows us to take
the limit in (3.17) as d tends to zero, so that

S \(didadsdy)p(d) = (f)4F(1) +O((min A;) /),

4
d;<A;

It remains to introduce the factor meas(R(d)) into this sum, which we
proceed to do via partial summation. Recall that we are working with the
example (3.5). For ease of notation we shall set d3 = z,dy =y and f(z,y) =
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meas(R(d)). Then
> x(didadsds)p~" (d) meas(R(d)) =

d;<Q;

Qs Q4
/0 /o Falwy) D x(didadsdy)p™ (d)dady

d1<Q1,d2<Q2
d3<w,ds<y

by partial summation, on noting that f(Qs,y) = f(x,Q4) = 0 for all z,y.
We therefore obtain

Syp—— = i (%)417(1) meas R + O</0Q3 /0Q4 \fmy(x,y)](min(;c’y))fl/m)'

However F,,(z,y) < X?/Q3Q4, as one sees from (3.15). Hence the error
term above is O(X?(min Q;)~'/?°). We therefore deduce that

1 4
St = 7 (2) F(1) meas R + O(X™/%(log X)4),

and similarly for each of the sums Sy 4 1 . If we now refer to (3.4) and (3.7),
we may conclude as follows.

Lemma 3.1 We have
S = 47*F(1) meas R + 4S5y + O(X?*(log X)),

where F(1) is given by (3.18) and (3.19), and Sy is given by (3.3).

4 The sum Sy—Hfirst steps

Clearly we have

So < Y r(La(x))r(La(x))r(Ls(x)|C(La(x))]

XER4
= Y SumIcm)l, (4.1)
meB
where
B ~3d | m s.t. dx € Ry s.t.
B_{mEZ'Y<d§X/Y}m{mEZ'L4(x):m} (4.2)

and
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So(m) =Y r(Li(x)r(La(x)r(Ls(x))

xEA(m)
with
A(m) = {x € Ry : Ls(x) = m}.
Suppose that the forms L; are given by
Li(z1,m9) = Ajzy + Biza, (1 <i<4). (4.3)

We have arranged that L;(z1,x2) = 1 (mod 4) whenever we have xy, 25 € Z
and x; = 1 (mod 4). It follows that A; = 1 (mod 4) and B; = 0 (mod 4).
In particular A; # 0. If we now substitute m = L,(x) for z1, so that z; =
(m — Byxy) /Ay, and write o = n for ease of notation, we find that

_aym+bn

Li (X) A4

= Li(m,n),

say, where
a; = A;, b= A4B; — ByA;, (1 <i<3).
Thus we have
a;=1 (mod 4), b =0 (mod4), (1<i<3). (4.4)

Note that, as x runs over Z2, not every value m € Z need occur. Indeed,
since 1 = 1 (mod 4) we will have m =1 (mod 4). We also observe that if x
runs over R, then the corresponding values of m and n will satisfy m,n < X.
Finally we note that we can clear the denominator in L}, so that r(L;(m,n)) <
r(Aq(a;m + bmn)).

We now write

H=6AA47 T] b

1<43<3

This will be nonzero since no two of the original forms L, ... , Ly were pro-
portional. We also define a multiplicative function r(n) by setting

) = {<6+ ”

, ifp|Hore>2,
1+ x(p), otherwise.

Using the multiplicative property of the function r(n) one can then verify
that

r(Ly(m,n))r(Ly(m,n))r(Ly(m,n)) < 64 (F(n)),
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where
3
F(n) = A} [ [(asm + bin). (4.5)
=1

Our principal tool in handling Sy(m) will be a theorem of Nair [7], which
will provide an upper bound of the correct order of magnitude. In order
to apply Nair’s result we must remove fixed prime factors from F. Thus we
first write F'(X) = ¢G(X), where G(X) is a primitive integer polynomial, and
c| H. It follows that ri(F(n)) < r1(G(n)). The only fixed prime factors that
a primitive cubic polynomial can have are p = 2 and p = 3. However since
m =1 (mod 4) we see from (4.5) that p = 2 can never divide G(n). If G(X)
has p = 3 as a fixed prime divisor then G(X) = £(X?3 — X) (mod 3). Thus
if we split the integers n into the three possible congruence classes n = nyg
(mod 3), and write n = 31 + ny we see that

G én0>ﬁ3 + 3%%}2 + G'(no)n + %G(no) = @<ﬁ)>

say. Since G'(ng) = F1 (mod 3) we see that G does not have p = 3 as a fixed
prime divisor. Thus, by splitting the range for n into three congruence classes
if necessary, we can produce a polynomial with no fixed prime divisor.

We now state the following special case of Nair’s theorem [7].

Lemma 4.1 Let f(n) be a nonnegative multiplicative function satisfying the
bound f(p?) < (e + 1)* for every prime power p°. Let G(X) € Z[X] be
a polynomial of degree at most 4, without repeated roots, and with no fized
prime factor. Write p(p) for the number of roots of G modulo p, and ||G|| for
the sum of the moduli of the coefficients of G. Then for any d > 0 there is a
constant cs such that

> ) < NI(1- ) ew (Z W) |
n<N,G(n)>0 p<N <N

for N > ¢s||G||°.

For our application the range for n will be an interval of length N <« X,
which will have to be translated by a distance O(X) in order to produce the
interval (0, N]. This has the effect of modifying the coefficients of the original
polynomial G. However even after this translation we will have |G| <
X3. Given the form (4.5) of F' we see that G will have three linear factors.
Moreover we have p(p) = 1 for p | m, while if p t mH we will have p(p) = 3,
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since p | a;b; — a;b; would imply p | A. We will therefore have

So(m) < Y r(G(n))

n<N,G(n)>0

PPN r1(p)p(p)
< NII(1 p) p(Z p )

p<N

<o L) (2)

3<p<N

© 3 T2 (-2 (522

plm,p>3 3<p<N

)
< N(loglog N)?, (4.6)

providing that N 5 X*. (Here o(m) is the usual sum of divisors function.)
Since we trivially have 7 (G(n)) < X2 we see on taking 6 = 1/6 that
So(m) < X (loglog X)? whether N > X'/2 or not. We therefore deduce the
following result from (4.1).

Lemma 4.2 We have

S < X (loglog X)* > " |C(m)],

meB

where B and C(m) are given by (4.2) and (3.2) respectively.

5 Completion of the proof of Theorem 1

Cauchy’s inequality shows that
1/2 2\ /2
Sl < #B) 2> lem)R) " (5.1)
meB 1<m<k X
However it is clear that if we let M and D run over powers of 2, then

#BS#{m<<X:EId|m,Y<d§X/Y}
< log(X/Y*)Y #{M <m<2M:3d|m,D<d<2D} (5.2
M
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for some D in the range Y < D <« X/Y. Clearly we may replace d by m/d,
so that
#{M<m§2M:3d|m,D<d§2D}
<#{M <m <2M :3d|m, M/2D < d < 2M/D}.

Now we may apply the following result.

Lemma 5.1 We have
T

(logy)n(loglogy)/2

#{nﬁx:ﬂd\n,y<d§2y}<<

uniformly for 3 <y < x, where n is given by (1.5).

This is the case u = 1, § = 0 of Theorem 21, part (ii) in Hall and Tenenbaum,
see [5, (2.2) and (2.3)].
Lemma 5.1 yields
M

M <2M :3d D<d<2D
M <m < Im D<d<2D} < (log X)7(log log X )1/2

whenever M > X3/4. For smaller values of M we merely use the trivial bound
O(M). Then (5.2) and (3.6) imply that

#B < X(log X)"(loglog X)*/2. (5.3)

It remains to consider

> lcm)P,

1<m<cX

for a suitable constant ¢. We expand the term |C'(m)|? and write (dy,ds) = h
and d; = hk; to produce

Y Icm)

1<m<cX

= Z X(dido)#{m < cX : [dy,do] | m}

d1,d2e(Y,X/Y]

=y > x(WPkiky)#{m < eX ¢ hkiky | m}

h<X/Y ki,ko€(Y/h,X/Yh]
(k1,k)=1

= 2 > X(W?kyko)#{n < cX/hk ks }
h<X/Y ki,ko€(Y/h,X/Yh)
(k1,k2)=1

-y S x(Wk) > D x(ks),  (5.4)

h<X/Y ki€(Y/h,X/Yh) n<min(cX/Yky,cX/hky) ko
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where the innermost sum in the final expression is subject to the conditions
Y/h < ky <min(X/Yh,cX/hkin) and (ko, k1) = 1.

In general we have

> X(k):ZM > x(k)

k<K, (k,s)=1 k<K, d|k
= Zu x(d) > x()
dJs j<K/d

< ) lu(d)x(d)
dls

< 7(s),

where 7 is the usual divisor function. Inserting this bound into (5.4) we
deduce that

Y lemP < ) > > 7 (k1)

1<m<eX h<X/Y k1€(Y/h,X/Yh] n<min(cX/Yk1,cX/hk1)

< X3 (g

h<X/)Y kie(Y/h,X/Yh]

= Z m1n<§ if) Z 7(k1)/ k1

h<X/Y k1 €(Y/h,X/Y ]
X X
< Z mm(Y h)log (X/Yh)
h<X/Y

< XYY log*(X/Yh)+ X > h'log?(X/Yh)
h<Y Y<h<X/Y
< Xlog*(XY?) + Xlog® (XY ?).

Our choice (3.6) of Y then ensures that
> 1C(m)* < X(loglog X)*,

1<m<cX
so that (5.1), (5.2) and Lemma 4.2 produce the bound
Sy < X?(log X)™"?(loglog X )'*/*.

This suffices, in conjunction with Lemma 3.1, for Theorem 1.

6 Proof of Theorem 2—preliminaries

Our starting point for the proof of Theorem 2 is the identity

S X @yr(m/dyr(n/d),

d|m n
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valid for any positive integers m,n. This identity allows us to pass from a
problem about solutions of a single equation mn = r? + s? to one which
involves a series of systems m = d(t* + v?), n = d(v* + w?) for varying d.
One can think of this as corresponding to a simple ‘descent’ process.

In view of part (iii) of NC2, we may take m = Ly, n = Lo, or alternatively
m = Lz,n = L4 in the above identity. Thus, if

S=>" r(Li(x)La(x))r(Ls(x) La(x)),

we have

T 16 %“ X(dd')
> r(La(x)/d)r(La(x) /d)r(Ls(x) /d')r(Ls(x) /d),

XER2

where we set 7(¢) = 0 if ¢ is not an integer. Since L; is always odd for x € R,
part (iv) of NC2 shows that we must have x; = vd (mod 4) if r(Ly/d) # 0,
and similarly xl V'd" (mod 4) if r(Ls/d) # 0. In particular, only terms for
which dd’ = v/ (mod 4) make a nonzero contribution, so that
(vv

g= XS ()t ), (6.1)

dd'=vv’ (mod 4)

where

S(d, d') = > r(Ly(x)/d)r(La(x)/d)r(Ls(x)/d )r(La(x)/d).

XER,z1=vd (mod 4)

Henceforth we shall assume, as we clearly may, that d and d’ are both odd.
We now show that it suffices to establish an asymptotic formula for each
individual sum S(d,d").

Lemma 6.1 Suppose that
S(d,d) < X*r(d)°r(d)°[d,d] 2 (6.2)

uniformly for all square-free d,d’, where [d,d'] denotes the least common mul-
tiple of d and d'. Assume further that

S(d,d) = C(d,d) meas R + o(X?) (6.3)
for all fixed square-free d,d’, and that

C(d,d) < 7(d)’r(d)°[d,d] (6.4)
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for square-free d,d . Then, under NC2, we have
S = CmeasR + o(X?), (6.5)
with

v , ,
¢ =) W) d)C(d, ). (6.6)
dd'=vv’ (mod 4)

Notice that we do not require any uniformity in d,d’ for (6.3). It suffices
that (6.3) should hold for each fixed pair d, d'.
To prove the lemma we set

E(d,d;X)=X"?S5(d,d)— C(d,d) meas R/,
so that (6.2) and (6.4) yield
E(d,d; X) < 7(d)°r(d)[d, d] 2

uniformly in X. On the other hand, for fixed d, d’ we will have E(d,d’; X) — 0
as X — oo. The required result will therefore follow from the dominated
convergence of the double sum

o0

> E(dd;X),

d,d'=1

providing that we can show that

o0

> r(d)P°r(d)’[d, d)?

d,d'=1

converges. However if we set (d,d') = h and d = hk,d = hk’ we will have

[e.e]

> r(d)Pr(d)ld, d] Z Sr(h)'(hkk') 2

d,d'=1 h,k,k'=1

and the required result follows.

We now establish the bound (6.2), using Nair’s result, Lemma 4.1. We
begin by writing A for the product of the 6 possible 2 x 2 determinants formed
from the various pairs L;, L; of forms, as previously. Thus if p is a prime which
does not divide A, then p | L;(x), L;(x) implies p | x, providing that i # j. We
shall put e = (d,A),e’ = (d',A) and f =d/e, f' = d'/e'. 1f d,d" are square-
free, we see that e and f are square-free and that (f, A) = 1. Similarly ¢’ and
f" are square-free and (f’, A) = 1. The condition d | L,(x), Ly(x) now implies
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f | x, while d’ | L3(x), L4(x) implies f’ | x. We therefore set x = gy, where
g = [f, f'] is the lowest common multiple of f and f’. We shall henceforth
assume that ¢ < X, as we clearly may. It now follows that

S(dd') <Y r(gLi(y)/d)r(gLa(y) /d)r(gLs(y)/d)r(gLa(y) /),

y

where the sum is for vectors y such that gy € R and y; = gvd (mod 4). If
the forms L; are given by (4.3), we conclude, using part (iv) of NC2, that
A; # 0 for 1 < i < 4. We proceed to define a multiplicative function ry(n) by
setting

. 1+ x(p) ifpt3dd [[A; and e =1,
ra(p°) =

(1+e)* otherwise.

Then

r(gLa(y)/d)r(gLa(y)/d)r(gLs(y)/d )r(gLa(y)/d’)
< 47 (g)*ra (L1 (y) La(y) La(y) Laly)).

Moreover, if we regard y, as fixed and set F'(X) = [] L;(X, y2), we will have
F(X) = ¢G(X) for some primitive quartic polynomial G(X), with ¢ | [ 4.
Since we are taking the forms L; to be fixed, it follows that

r(gLy(y)/d)r(gLa(y)/d)r(gLs(y)/d')r(gLa(y)/d) < 7(g9)*r2(G(y1)).

We intend to apply Lemma 4.1, and we therefore investigate possible fixed
prime factors p of H(X) = G(2X + 1). Since G is quartic and primitive we
must have p = 2 or p = 3. However, for y; = grd (mod 4), we see from
part (iv) of NC2 that F(y;), and hence also G(y1), must be odd. Thus
H(0) = G(1) is odd. There remains the case p = 3. Suppose that 3 | H(n)
for all n € Z. We split the available y into congruence classes modulo 3 and
consider the three polynomials

HBEX +7)

Hj(X) = ——5—,

(j=0,1,2).

Clearly the only possible fixed prime factor of H; is p = 3. We claim that
if H; does have 3 as a fixed prime factor, then H; is divisible by 3 as a
polynomial. Moreover, if we then put H;(X) = 3K;(X) we claim that H;
does not have 3 as a fixed prime factor. To prove these assertions, suppose
that there is some j such that 3 | H;(n) for all n € Z. Then 9 | H(3n + j),
whence 9 | H(j) + 3nH'(j) for every n. It follows that 9 | H(j) and 3 |
H'(j) so that 9 divides the polynomial H(3X + j). Thus 3 | H;(X) as
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claimed. Moreover, if 9 | H;(n) for every n, then 27 | H(3n + j), whence
27 | H(j) + 3nH'(j) + 9n*H"(j)/2. From this we deduce that 3 | H”(j).
However we then see that

H'(j) = sHOG)  HY()
7 +m G +m 7
(mod 3).

H(m+j) = H(j)+mH'(j) +m?

HOG) HOG)
6 24

This produces a contradiction, since we are supposing that H(X) is primitive
and has 3 as a fixed prime factor.

It therefore follows that we may replace H(X) if necessary by a set of 3
polynomials H;(X) or K;(X) which have no fixed prime divisor. Moreover
ro(H(3n+ 7)) < r2(3)r2(H;(n)) and ro(H(3n + 7)) < r2(9)r2(K;(n)), so that
only a factor O(1) is lost. Now, if

S(y2) = Y _r(gLi(y, v2)/d)r(gLa(y, v2) /d)r(gLs(y, yo) /d')r(gLa(y, y2)/d'),

Y

where the sum over y is subject to g(y,42) € R and y = grvd (mod 4), we
find from Lemma 4.1 that if yo # 0, then

Slyz) < gdg)“ H(l—%) exp(Y M)

p<X p<X P
X 4 4 64
< et TT (1o 222 (3= &)
9 5<p<N p p<X p pldd’yz p

X (g (2D (2l

<
g dd’ 2

as in (4.6). We trivially have

SO)< Y Tyt < X2

y<X/g

We therefore deduce that

S(d, d/) < X2g—2+Xg—17_(g)47_(dd/) Z (U(|y2|))64

1<y2 <X /g |y2|
< X?%g2%7(g9)*r(dd).

Since g|dd’ and [d,d'] | Ag, the bound (6.2) then follows.
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7 Proof of Theorem 2—the asymptotic for-
mula

We must now establish the asymptotic formula (6.5), and analyse its main
term, with a view to proving the bound (6.4). We begin by showing how
Theorem 1 may be applied.

The conditions d | Ly (x), La(x) and d’ | Ls(x), L4(x) will hold if and only
if x € ANgaa.a). We therefore take a,b as a basis for Ayga ) and write
a = (a1,az2) and b = (by,bs). Since (dd',dd') is clearly in Agqq,a), We see
that at least one of a; and by must be odd, and we can therefore take a; to be
odd. By changing the sign of a; if necessary we can then assume that we have
a; = vd (mod 4), and finally, replacing b by b — ka for a suitable integer k,
we can assume that 4 | b;. Having normalized the basis a,b of A a4 ) in
this way we set x = y1a + yab. Moreover we write Li(y) = d ' L;(y1a + y2b)
for i = 1,2 and similarly L’(y) = d' ' L;(3na + y,b) for i = 3,4, and we set

RO ={y eR?:yya+ b e RO
It now follows that
T1 = yra1 + yoby = y1vd (mod 4),
so that for ¢ = 1,2 the condition L;(x) = va; (mod 4) becomes
Li(y)=d 'Li(x) =d 've; =y (mod 4).
Similarly for ¢ = 3,4 we have
Li(y)=d 'Lix) =d "Wz =y (mod 4),

since dv = d'v' (mod 4) in (6.1).
It is now apparent that, for fixed d,d’, the forms L)(y), and the region
R'©) satisfy NC1. Evidently we have meas(R’) = measR/p(d,d,d’,d’). For
fixed d, d we therefore deduce that
Ar* [, 0p(d, d)
p(d,d,d,d)

S(d,d) = meas R + o(X?)

for each fixed pair d,d’. Here we have

op(d,d') = E,(d,d'){1 - x(p)/p}"

where

Ey(d,d) = > x(p)* P pe(p%, % p7, p°)
a,B,7,6=0
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and po(dy,ds,ds,dy) is the determinant of the lattice
={yeZ:d;| Li(y), 1 <i<4}.

We now observe that pg(dy, ds, ds, dy) is also the index of the lattice A; in
72, and hence can equally be identified as the index of

={x=ya+ypb:yeZ d;|Li(y), 1 <i<4}
in
Az = {x=ya+yb:yecZ?}.
However we have
= {x € Z?:ddy | Lr(x), ddy | Ly(x), d'ds | L3(x), d'dy | Ls(x)},
and
—{x €22 d| Li(x), d| La(x), d' | Ly(x), d' | La(x)}.
It therefore follows that the index of Ay in Aj is

p(ddl, ddg, d/d3, d/d4)
pld.d,d.d)

and hence that

p(ddl, ddg, d/dg, dld4)
p(d,d,d,d)

pO(d17 d27 d37 d4) ==

We now see that po(p®,p%,p7,p°) = p(p®, p°,p7,p°) if p t dd’, by the multi-
plicative property (3.10). It therefore follows that E,(d,d’) = E, for p { dd’,
with F, as in Theorem 1.

We now define

N = Hp
Ep=0

so that we must have [] o,(d,d’) = 0 unless N | dd'. For a typical prime
factor p of dd' let p* || d and p" || d’, so that

p(d,d,d,d)=T] p(" ", p".0").
pldd’

Assuming now that N | dd’ we set

Fy =[] B0 —xp)/p)"
PIN
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Moreover we define ES"” by (1.14), so that E, = ES”). We then see that

I, 00(d,d) .
szNHQ(p ,p"),
s Wy Wy pldd’
where
o5 %) = By (1= x(p)/p)* ifp|N,
’ B /g0 if pt 2N,

If we extend g(m,n) by the multiplicativity condition
9(ef, ¢ ') = gle.)g(f, ) if hef(ed', f1) = 1,
we then deduce that (6.3) holds with
C(d,d") = 4r*Fyg(d,d)

when N | dd', and C(d,d’) = 0 otherwise. Although we have defined g(p“, p”)
for all nonnegative integer exponents u,v the reader should note that only
the values u,v = 0,1 are relevant for us, since d and d’ may be taken to be
square-free in (6.1).

When pt A we see from (3.12) that E, =1+ O(p~') and

(u+1)°

(u,v)
Ep S p2u

{1+0(™)},
for u > v. Thus
9", p") < T(")*7(")*[p", 0"
for p >a n 1. For the remaining primes p <a ny 1, and in particular those

primes which divide A, we automatically have

g(p",p") <a T(P")* (") P" P17, (0 <u,v < 1).

We may now deduce the required bound (6.4), with an implied constant
depending on A, using the multiplicative property of the function g(d, d’).

We have now established the asymptotic formula (6.5) and the bound
(6.4), and it remains to consider the constant C' given by (6.6). Our work
thus far shows that

x (v
c=Mymipe Y )l d).
dd'=vv’ (mod 4)
N|dd'
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We shall rewrite this as

Ty M, yaygta, ) = T )5+ Do),

2
24dd’, N|dd’

where

Si= Y pdu(d)g(d.d) and By =Y x(dd)u(d)u(d)g(d,d).
2fdd’, N |dd'’ N|dd’

To evaluate ¥; we set d = ef where e | N and (f,N) = 1, and similarly
d =¢€'f'. Then

m={ Y wen@ge ) Y uHue N}

e,e/|N, N|ee (ff,2N)=1

so that we may use the multiplicative property to deduce that

2= [[{=9(t.p) = g, 1) + 9(p.0)} [ [ {1 = 9(1,p) = 9(p, 1) + 9(p. )},
pIN p2N

whence

Fysy = Fy[[{EPY - EPY — B0 + BV = x(p)/p)*

p|N
0,0 0,1 1,0 1,1 0,0
x [[{ELY — BOY — BOO + BV} BOY
= [I{EPY = EOY — B+ BRIV = x(p)/p)*, (7.1)
p#2

since EI(,O’O) = 0 when p | N. In exactly the same way we find that
FyS = [[{ES? = x(0) ESY = x(p)ESY + EVY (1 - x(p)/p)t. (7.2)
p#2

Using the functions 7 (p) and T’ (p) given by (1.13) and (1.17) we therefore
deduce that

ng{x(VV’)HT (p)(1 = x®)/p)* + [ Te0) (1 = x(p)/p)* }

p#2 p#2

This suffices for Theorem 2, providing that we can confirm the evaluation of
0y and 0., and verify that E](;l’o) = EZ(;O’D = 0 for any prime p = —1 (mod 4)
that does not divide AjaAsy.
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8 Proof of Theorem 2—Ilocal densities

We begin this section by defining and then computing the local densities for
the variety given by (1.7), subject to the condition x € R,. For a prime p > 2
the p-adic density o, is merely

o, = lim p~**N(p°), (8.1)

Ee—00

where

N(p) = # Ty, ... 26 Ly(x1,29) La(Ty, 22) = 25 + 23 (mod p®),
p (mod p®) * Lz(zy,72)La(z1,9) = 22 + 22 (mod p°) [

Similarly, for p = 2 the 2-adic density in Ry will be given by (8.1), for p = 2,
but with

T1,...,Tg 2)(1.1’
N(2°) =# 499 Ly(zy, 29) Lo(z1, 72) = 22 + 22 (mod 29), 5 . (8.2)
(mod 2°) L3(z1,09) Ly(w1,79) = 22 + 22 (mod 2°)

Finally, the real density is given by

Ooo = / / / e(a@y + fQq)dxy ... dxgdfda,
—o0 J -0 Jz1,...,76
where

Q1 = Li(x1,20) Loy, 20) — a5 — a3, Q2 = Ls(w1, w2) Ly(w1, w2) — 2% — f.
Here (z1,x9) runs over R, and x3, x4, x5, T each run over an interval of the
form [—cX, cX], with ¢ a suitably large constant. According to part (iii) of
NC2, this is sufficient.

For a prime p = 1 (mod 4) one easily finds that
#{x,y (mod p°) : 2° +y* = A (mod pe)}
pe+epi(p—1) if p© | 4,
(I+y(A)p 7 p—1) ifrp(A) <e,

for any integer A, where v,(A) is the value of v for which p” || A. Similarly,
when p = —1 (mod 4) we have

#{x,y (mod p°) : 2° +y* = A (mod pe)} =
PE iyt A
ptp+1) ify(A) <e, 2|v,(4), (8.3)
0 if v,(A) <e, 21v,(A).
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Finally, for p = 2 we have
#{z,y (mod 2°) : 2° + > = A (mod 2°)} = 2°*", (8.4)

providing that e > 2 and A =1 (mod 4).
It follows that, for a fixed prime p =1 (mod 4), we have

N ) =Y 0" (0 = {1 + vp(Li(x) La(x)) {1 + p(Ls(x) La(x)) }

Z1,22

+ O(€2p3e)

as e — 00, where the summation is for x (mod p®), subject to the condition
that p® { L1(x)Lo(x) and p° { L3(x)L4(x). Now, if v, 19, v3,v4 < e, then we
see that

#{x (mod p°) : v,(Li(x)) = v, (1 <i<4)}
= Z (—1)frH 2t x (mod pf) : piti
f1,02,f3,fa=0,1
= Z (_1)f1+f2+f3+f4p2ep<pl/1+f1 pV2+f2 pV3+f3 pu4+f4)—1' (8.5)
f1,02,f3,fa=0,1

Li(x), (1 <i<4)}

It therefore follows that

N(p®) =p**(p—1)° > (L4 0+ v2)(1+vs 4+ va) x

v1+va<e,v3+ra<e

Z (_1)f1+f2+f3+f4p(pl/1+f1 7 py2+f2,py3+f3,py4+f4)_1

f1,f2,f3,f1=0,1
+ O(e*p™)

= p4e—2(p — 1)2 Z (1 + v+ 1/2)(1 + 3+ 1/4) X

v1,v2,v3,v4=0
Z (_1)f1+f2+f3+f4p(pl/1+f1 pl/2+f2 pV3+f3 pl/4+f4)—1
f1,f2,f3,f1=0,1
+ O(e*p™)

[e.o]

=p"C(p—1)7 Y ppppt) T X
1, 42,143,04=0

Do (DI g s — i = fo) (L4 pis 4 pa— S — fa)

0<fi<min(1,p;)
+ O(e*p™).
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The sum over the f; vanishes unless min(py, u2) = min(us, 14) = 0, in which
case it is 1. We now conclude that

op = (1—1/p)? > p(p" . PP ") (8.6)

min(p1,p2)=min(u3,u4)=0

= (1-1/p)°’T-(p).

We proceed to investigate the case p = —1 (mod 4) in much the same
way. Using (8.3) and (8.5) we deduce that

o0

N(pe) _ p4e—2(p + 1)2 Z (—1)“1+“2+“3+‘u4p(p#1,p“Z,p“?’,p‘u‘l)_lF
”17#2’“37/"‘4:0

+ O(e’p™),

where F'is the number of integers fi, fa, f3, f4 in the range 0 < f; < min(1, ;)
such that f; + fo = 1 + pe (mod 2) and f3 + fy = us + pa (mod 2). The
sum over the f; therefore equals 4 if y; > 1 for every i, and equals 1 when
min(py, o) = min(pg, t4) = 0. In the remaining case the sum is equal to 2.
From this we deduce that

op = (14+1/p)°Te(p)  (p=—1 (mod 4)). (8.7)

The formula (1.12) therefore follows.

We turn next to the case of p = 2. In view of part (iv) of NC2, we will have
Li(x)La(x) = L3(x)L4(x) = 1 (mod 4), providing that 2 t z1. According to
(8.2) and (8.4) we deduce that

N(2°) = 227 #{x (mod 2°) : 2 z; } = 2**,
whence
09 = 2.

Finally, to evaluate 0., we restrict x3, x4, T5, xs to be nonnegative, and
substitute ¢; = Ly(@1,22)La(x1,22) — 25 — 23 for x4, and similarly ¢ =
L3(zy,w3) Ly(z1, 09) — 22 — 22 for z5. We write

Gl = Ll(mlwa)LZ(wla x2) - CC?)’ — {1, G2 = L3(CC1,.’172)L4(371,$2) - 33? — {2,

and we set

1 _ _
F(Ch’ q2) = _/ Gl 1/2G2 1/2d171d[E2de‘3dl'5,
T1,22,23,T5
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where the integral is subject to (x1,22) € R and 0 < z3,25 < cX, together
with the constraints

Ly(wy,29) Lo(21,2) — 25 > q1,  Ls(z1, 22) La(m1, 29) — 22 > go.

Then we have
o — 16 / / / Fla1, @2)e(aqy + Bas)dardas dfda
—00 J =00 Y Q1,92

and by the Fourier inversion theorem this reduces to 16F(0,0). To evaluate
F(0,0) we observe that

va 7r
/ {A— 22}V x = =,
0 2

whence F(0,0) = 72 meas R /16 and
Ooo = T meas R.

Suppose next that the equations (1.7) has an integer solution xy,... , g
with (z1,73) € Ry. It follows from part (iv) of NC2 that 22 + z% and z2 + x2
are nonzero integers, so that the solution is nonsingular. A standard argument
now shows that this solution can be lifted via Hensel’s Lemma to a positive
p-adic density of points, for any prime p. Thus we must have o, > 0 for every

p.
We now evaluate o, when p { A. For such primes, (3.12) gives

p(p", p'2, pis, p) = p*t?

where a is the maximum of the y;, and if a = p;, say, then b is the maximum

of the set {p1, pa, pes, ta} \ {pt;}. When min(p, po) = min(ps, pa) = 0 we
therefore have

p(p/", pre, pe, pt) = pree T, (8.8)

so that (8.6) yields

o, = (1—1/p)? Z pHTH2 s b

min(p1,pu2)=min(uz,mns)=0

= a1 Y o)

min(m,n)=0
= (1+1/p)

when p =1 (mod 4). This proves (1.15) for such primes.
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The computation for the case p = —1 (mod 4) is somewhat more involved.
We first evaluate
Sl — Z (_1)u1+u2+u3+u4p(p,u1 7 pm 7 pu37pu4)—1'

min(p1,p2)=0, min(us,ua)=0
Using the argument of the previous paragraph we find that

Sl — E (_1)u1+u2+us+u4p7u1fuzfusfm
min(ﬂlv#?)zov min(:u‘3uu‘4):0

S capemeen)’

min(m,n)=0
= (p-D(p+1)7%
Next we consider
Sy = Z (_1)u1+M2+M3p(pM,pm?pus’ 1)—1
H1,p2,pu3>1

We may write this as

SQ —_ Z (_1)a+b+cpmin(a,b,c)p7afbfc
a,b,c>1
_ Zpk Z (_1)a+b+cp—a—b—c
= min(a b,c)=k
= Zp { Z )a+b+cp—a b—c _ Z (_1)a+b+cp—a—b—c}
a,b,c=k a,b,c=k+1
1 + pt 1+pt
1+ p_3 >
T (A+p Zp
1+p3 1

(4 PP+
Of course we get the same result for any sum in which three of the u; are at
least 1 and the fourth is 0. The next sum to compute is

Sy= Y (=1yteppm pe,1,1)7!
1,221
This is easily found to be

Sy = Z (_1)a+bpfa7b _ (p + 1)72.

a,b>1
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Now if
Sy = >, (—Lytretiatiap(pn, e phe pia) =L,
p1,p2>1, min(us,pa)=0
then

(1-p7)* 1
(I+p1)2p?+1

S4ZQSQ—|—53:—

Clearly we have the same result if the roles of pi, o and pus, pg are inter-
changed. Finally we examine

oo

Sy = Z (_1)u1+u2+u3+u4p(p,u1 M2, pu37pu4)*1_
H1,p2,13,pa=1
Now, according to (3.12) we have

[e.9]

Sy = p—2 Z (—1)“1+“2+“3+“4p(pm,qu,p“3,p“4)_1

H1 42,143,404 =0

= piQ{Sl + 254 + 55},

whence

. S1 4285,

S,
5 21

- —S4.

Then, as in the proof of (8.7), we have
op = (14 1/p)*{S1 +45,+4S:} = (1+p )*S = (1—p )%

This establishes (1.15) when p = —1 (mod 4).
Having dealt with the evaluation of the densities o0, our next task is to

interpret the sums E5"* given by (1.14). Only primes p = —1 (mod 4) need

concern us. We claim that whenever p = —1 (mod 4) we have
u,v) o —2u—2v —4 1 —6e u,v e
Byt = p 22 (14 1/p)* lim p N (pf), (8.9)
where

T1y,...,270

Ly(21, x2)
NI () = # (mod p°) : Z,Exl, ng
Ly(x1, x2)

If p* | Ly(x1, z2), then the number of pairs 3, x4 modulo p¢ for which

p"Li(z1,22) = 23 + 27 (mod p*")
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will be given by (8.3). Thus if p¢ | L (z1, 22) there are O(p®) such pairs. Oth-
erwise suppose that p/ || Ly (1, 22). Then if f—u is even there are p*~1(p+1)
pairs, and if f — u is odd there are no such pairs. If we set u; = us = v and
ug = uy = v we then find that

N(u,v) <pe) _ p4e+2u+2v—4(p + 1)4 Z N(pe; Vi, Vs, U3, V4) + O(p5e)7
0<y;<e
vi=u; (mod 2)

where

N(p% v, Vo, V3, 104) = #{9317152 (mod p°) : vp(Li(x1,22)) = v, (1 <0< 4)}

The sum over the v; may be re-written as

2
Z Z (_1>f1+f2+f3+f4 p c
0<y;<e f1,f2,f3,f1=0,1 p(pV1+f1 , pV2+f27pl/3+f3’py4+f4)
vi=u; (mod 2) R ’
whence
elglolop_GeN(u’v)(pe) _ p2u+2v(1 + 1/]7)427
with

(_1)f1+f2+f3+f4

o= Z Z p(pl/1+f1 pl/2+f2 pl/3+f3 pV4+f4)
vi=u; (mod 2) f1,f2,f3,f2=0,1 ’ ' ’

— Z (—1)9rFo2tastos p(pon 02 pgs 04)~1

gi>u;

as in our treatment of (8.7). This suffices for the proof of (8.9).
It is now clear that ES“”) > 0 for p = —1 (mod 4). Now let p{ AjpAsy for

some prime p = —1 (mod 4), and let u = u; = uy = 1 and v = uz = uy = 0,
say. Suppose we have a solution to the congruences
Li(x1,20) = p(a +27),  La(21,22) = p(as + 23) (mod p°),
Ly(w1,70) = 22 + 23,  Ly(w1,19) = 22 + 23, (mod p°)

in which p*/ | 21, x5 for some exponent 2f < e —2. Then p/ must divide each
of x3,...,x19 and therefore

Li(yr,y2) = p(y; +97),  La(yr,y2) = p(y3 +yg) (mod p==*/),
La(yr,v2) = v2 +y2,  Lalyr,v2) = ve + y3, (mod p* )

where z; = p?fy; for i = 1,2 and x; = pfy; for 3 < i < 10. Since the
first two of these congruences imply that p | Li(y1,v2), La(y1, y2) we deduce
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that p | y1,ve, since p Ao It follows that p | L3(y1,y2), La(y1, y2), and
hence that p divides both y2 + 2 and ya + y3,. Thus p? | v2 + y2, 2 + 3o,

so that p* | Ls(y1,%2), La(y1,%2). Since p t Ay this requires p* | y1, s,
whence, finally, p>’=2 | x1,25. We therefore conclude that any solution of
the original congruences must have p*~! | z1, 5. In view of (8.3) we deduce
that N0 (p?) = O(p*), whence ES"” = 0, by (8.9). Similarly we will have
B = 0.

It remains to show that if ¢ = —1 then the variety (1.7) has no points
with (z1,29) € Ry. Clearly, if ¢ = —1 then we must have T_(p) = 77 (p)
for every prime p | A with p = —1 (mod 4). Let

P={p|A:p=—-1 (mod4), T_(p) =—-T4(p)}

We now argue by contradiction, assuming that we have a point (x1,22) € Ry
on the variety (1.7). Then, since L;(z1,x3) # 0 by part (iv) of NC2, we see
that the equations (1.7) entail

vp(L1(21, 22)) = vp(La(21, 22)) (mod 2),
vp(Ls(w1, 22)) = vp(La(21, 32)) (mod 2),

for any prime p = —1 (mod 4). We now suppose that
2| vp(Li(z1,22)) —u and 2| v,(Ls(z1,22)) — v

with 0 < u,v < 1. Then we can find a nonsingular p-adic solution to the
equations

Li(w1,22) = p"(y3 +v3),  La(x1,22) = p"(y3 + v3),
Ls(x1,m9) = p* (42 +42),  La(z1,22) = p°(y2 + %)

This can then be lifted by the standard procedure to show, via (8.9), that
E" > 0. Thus

E](J“’“) >0 if 2|y,(Li(xr,22) —u and 2| v(Ls(xy,z2)) —v.  (8.10)

We now show that v,(Ly(z1,22)) and v,(Ls(x1,x2)) have opposite parities
whenever p € P. Since T_(p) = =T, (p) for such a prime, and E’I(,u’v) > 0 for
all u, v, we will have E;(,O’O) = E,(,l’l) = 0. The claim then follows from (8.10).

Conversely we now show that if v,(Ly(x1,22)) and v,(Ls(z1, z2)) have
opposite parities, and p = —1 (mod 4), then p € P. For such a prime, it
follows from (8.10) that either EZSLO) > 0 or E,SO’” > 0 . However we have
already seen that E,S“’) = EISO’“ = 0 unless p | A1pAgs. Thus if v,(Ly (21, 2))
and v,(Ls3(z1,x2)) have opposite parities, and p = —1 (mod 4), then p | A.
Thus p must occur in the product for e, whence T_(p) = +T,(p). Since
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cither Y > 0 or E"Y > 0 we cannot have T_ (p) = T+(p), so that we
must indeed have p € P.

We have therefore shown that the set P consists precisely of those primes
p = —1 (mod 4) which divide Ly(z1,x9)Ls(z1,22) to an odd power. Since
part (iii) of NC2 implies that L;(zy,x2)Ls(z1,x2) is positive, we conclude
from part (iv) of NC2 that

x(w') = Ly(z1, 29) Ls(z1, 23) = (—1)*7 (mod 4). (8.11)

On the other hand we have

II 7e/re=-n*,

plA, x(p)=—1

and since € = —1 we deduce that
(1) = —x().

This contradicts (8.11), and therefore completes the proof of Theorem 2.

9 Examples

In this section we shall discuss Theorem 2 in the context of the examples
(1.10), (1.11) and (1.18). We begin with (1.10), which we repeat here as

yilyr +4ye) = 23 + x5, (Tyr + 16y2)(19y1 + 44ys) = x5 + 3.

This has been shown to have no nontrivial rational points, even though it
has nonsingular points in every completion of Q. We take the region R to
be the square (0, 1)?, so that parts (i), (ii) and (iii) of NC2 will be satisfied.
Moreover part (iv) is clearly satisfied with v = 1 and v/ = —1.

The existence of nonsingular local points is sufficient to ensure that o, > 0
for every prime p. However for the forms in (1.10) we find that AjpAszy = 24,
so that Ez(,l’o) = Efl(,o’l) = 0 for any primes entering into the product in (1.16).
It follows that T (p) = T+ (p) for such primes, so that ¢ = xy(vv') = x(—1) =
—1. Thus the failure of the Hasse Principle is fully explained by Theorem 2,
at least as far as points with (y1,y2) € Ro are concerned.

We turn now to the example (1.11), namely

yi(yr +4yo) = 25 + 23, (y1 + 8y2)(13y1 + 64yo) = 27 + 2.

Although there are rational points in this example, we showed in §1 that all
such points have y,/y; > —1/8. We shall therefore consider the application
of Theorem 2 to two different regions. We begin by examining the case

yi,y1 +4y2 >0, y1 + 8y, <0, 13y, + 64y, <0,
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for which there are no rational points. Here we must replace L3 and L4 by
— L3 and — L, respectively, to produce linear forms which will all be positive.
Having made this change we then take R(®) = (0,1)2. Then parts (i), (ii)
and (iii) of NC2 will hold. We also see that part (iv) holds, with v = 1
and Y = —1. We may now proceed as in the previous example, noting that
A13A3, = 2°-5. Once again it follows that ¢ = —1, so that R, produces no
solutions.
On the other hand, if we look at the case

Y1, Y1 + 4y2 > 0, Y1 + 8y2 > 0, 13y1 + 64y2 > O,

we may again work with R(®) = (0,1)2. This time we have v = 1/ = 1 in part
(iv) of Normalization Condition 2. The value Aj3Azy = 2° -5 is the same as
before, so that (1.16) yields € = x(v') = x(1) = 1. It therefore follows that
the density of rational points in R is twice the product of local densities,
while the density of rational points in the first case was of course zero.

The examples we have looked at so far all have ¢ = £1. However other
values may occur, as the example (1.18)

z1 (v + 1225) = 23 + 23, (1 + 4mp) (71 + 1679) = 22 + ¢,
will demonstrate. We shall use the region
R = {0 < 21,21+ 1625 < X'}

so that
2

2 T 2
o = R=—X".
o T° meas 16

There is a nonsingular rational point with (z1,z5) = (1, 0), and this is enough
to ensure that all the local densities are positive. Since AjaAgy = 2% - 32 and
v =1"=1, we now find that ¢ = T_(3)/7T(3). In order to show that ¢ # +1

it will suffice to demonstrate that E§°’°) and E§1’°’ are positive. To do this
we shall use (8.9). When u = v = 0 the congruences

r) =22+ 235 (mod 3), x; + 1225 = 22 + 22 (mod 3),

Ty +4xy = 22 + 23 (mod 3), xy + 1615 = 25 + 23, (mod 3)

have a nonsingular solution with z; = 1 and x5 = 0, which is sufficient to
ensure that E30’0) > (. Similarly, for u = 1, v = 0, the congruences

71 = 3(23 +23) (mod 3%), 21 + 1225 = 3(22 + 22) (mod 3°),

z1 +4x9 = 27 + 15 (mod 3°), 11 + 1679 = 25 + 27, (mod 3°)
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require z; = 3z}, say, so that they are equivalent to

z) =25+ 25 (mod 3°7Y), ) +4ay =22 + 23 (mod 3¢7Y),
371 + 4xy = 22 + 27 (mod 3°), 3x; + 1625 = 73 + 25, (mod 3°).

There is now a nonsingular solution with zj = xo = 1, so that E:gl’o)

required.
Thus (1.8) provides an example with 0 < 1+ ¢ < 2. We illustrate this
example numerically. Since o9 = 2, we see that (1.15) yields

[Tow = (= T T+ 002 = o

Moreover one finds from (1.12) that

> 0, as

T (3) 16 32, 0,0 (1,1)
Lt 2t ) = (T (3) + T-(3)) = S (B + B§™).
75 (1+ T ) = 5 (T +7-3) = (B + B{Y)
One may now evaluate Eéo’o) and Eél’l) by a somewhat tedious calculation
along the lines of that given in the previous section to prove (1.15). The
starting point is the fact that (3.12) remains true for p = 3, except when
min(ey, e2) > max(es, e4), in which case

p(3e1’ 3@2’ 3@3’ 364) — 3€1+62—1’
or min(eg, e4) > max(ey, e3), in which case
p(361 32 3es 364) — 3€3+64—1'

The conclusion is that

9 1
E(O’O) _ 7 d E(l n _
5 T M 20°
It follows that we will have asymptotically 2X? solutions to (1.18) in Rs.

This is illustrated by Table 2, in which

S(X) =Y r(Li(x)La(x))r(Ls(x) Ls(x)).

XER2
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Table 2
X S(X) S(X)/QX2
1000 1993472 0.9967 ...
2000 8030592 1.0038 ...

4000 32057728 1.0018 ...
8000 | 1276046726 0.9969 ...
16000 511437824 | 0.9989 ...
32000 | 2043518720 0.9978 ...
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Kronecker double series and the dilogarithm

Andrey Levin

Abstract

In this article we give an explicit expression for the value of a
certain Kronecker double series at any point of complex multiplication
as a sum of dilogarithms whose arguments are values of some modular
unit of higher level at the corresponding points. This result can be
interpreted in the spirit of the Zagier conjecture. The special value
of the Kronecker double series is equal to the value of the partial (-
function of an ideal class for an order in an imaginary quadratic field.
The values of the above mentioned modular unit belong to ray class
field corresponding to this order. Thus we get an explicit formula
for the value of a partial (-function at s = 2 as a combination of
dilogarithms of algebraic numbers.

1 Introduction

1.1 Modular part

1.1.1 We start by fixing notation and recalling some standard facts about
modular curves. We set H = {7 € C | $(7) > 0}. Then a matrix M =
(28) € GLy(Z) acts on H by M(7) = %. Write L = L, for the lattice in C
generated by 7 and 1, and F = E; for the corresponding elliptic curve C/L,.
The matrix M defines a map of lattices M7: Ly — L, given by w —
(7 +d)w and an isogeny M, : E. — En ) given by & — (ad—bc)(cr+d) €.
If 7 is a fixed point of M, then M, is a map of the curve E, onto itself. In
this case we omit the subscript 7 in our notation.

A point £ € E; defines a character x¢ of the lattice L, given by x¢(w) =
exp (M) This pairing is GLy(Z)-invariant: xaze)(w) = xe(M(w)).

T

Definition 1.1.2 The second Kronecker double series Kqo(&;T) is the C'™-
function on C x H defined by the convergent series

Kol = (1) o) 1)

2mi |w|4
weL

177
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where, as usual, " denotes the sum over L\ {0}.

One checks that this function is invariant under the action of SLy(Z) on
C x 'H defined above.

1.1.3 The Weierstrass p-function is the elliptic function defined by the con-

vergent series
1 / 1 1
pGT)=E+ > (m - @)

1.2 Dilogarithms
Definition 1.2.1 The FEuler dilogarithm Lis(z) is the multivalued analytic

function on P'\ {0,1, 00} defined as the analytic continuation of the series
> s j—; (which converges for |z| < 1).
Definition 1.2.2 The formula
Dy(z) = $(Lig(z)) + arg(l — 2) - log|z| for z ¢ {0,1, 0},
D4(0) = Dy(1) = D(o0) = 0.

defines a single-valued real function on P! that we call the Bloch—Wigner
dilogarithm. Tt is continuous on P! and smooth on P!\ {0, 1,00}
We can extend the function Dy byt linearity to a function on the Q-vector

space Q[C].

1.2.3 Define a map
5: Q[C\ {0,1}] — A’C* by the formula [z] — z A (1 —x).

1.3 Results

Main Theorem 1.3.1 Let 7 be a fized point of M = (¢b) # 0,1. Set
m = det M and n = det(M — 1). Then

r =)

—(m+1)(n+1)

:4mnD2(czi:rl;c>+ Z lelD2< ka+lﬂ)p(a)( )>’

acKer(M)\0 k=1
BeKer(M—1)\0

Ko(0;7)

the arguments of the dilogarithms are in the kernel of 6 (see 1.2.3):

(5(4mn X [er +d] + a;l(p(kg(;) lﬁ)p_(ogm))) =0¢e N (C*"®,Q).
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1.3.2 Our proof is based on introducing a new function £;,, which we
call the elliptic (1,1)-logarithm and define in Section 2. The Main Theorem
follows from Theorems A and B below.

Theorem A 1.3.3 Let 7, M, m and n be as in the Theorem 1.5.1. Then

co(r=7T)(m+1)(n+1)
41 mn

Ko(0;7)

ad — be
=—-D, (c7‘+d> + Z 51,1(04757 0)- (2)

a€Ker M\0
BeKer(M—1)\0

Theorem B 1.3.4 Let a and 3 be two distinct nontrivial torsion points on
an elliptic curve E,, say ma = nf =0 for some m,n € N. Then

i > D2< ko t lﬁ)p(a)( )>

k=1 l=1
= —2mn(£171(a,ﬁ, 0) + El,l(_a7ﬁ7 0)) (3)

1.4 Generalities and structure of the article

1.4.1 The fact that the value of the Kronecker double series Ko at a CM
point can be expressed as a combination of dilogarithms is not new. It can be
derived from a result of Deninger as follows. A CM point 7 defines a ring R of
endomorphisms of the correspondent lattice L.; this ring is an order in some
imaginary quadratic extension F' = R ®7 Q of Q. Extend the field F' by the
value of the j-invariant at the point 7. Deninger [D1] constructed an element
in the third algebraic K-group of the field F(j(7)) that the regulator maps
to the value of Ky at 7. We know by Suslin and Bloch that the regulator on
K3 of a number field is given by the Bloch-Wigner dilogarithm. Hence we
can conclude that the value of the Iy equals a combination of values of the
dilogarithm at numbers in F'(j(7)). The arguments of the dilogarithm in our
formula belong to some extension of the field F'(j(7)), but the set of them is
Galois invariant.
Our proof is in some sense parallel to Deninger’s construction.

1.4.2 We can also interpret the Main Theorem independently of algebraic
K-theory. The value of K5(0;7) for a CM point 7 is (a rational multiple of)
the value at s = 2 of the partial zeta function (pa(s) = > ,c4 N(a)™® for
some ideal class A. The fact that this value can be written as a combination
of dilogarithms with arguments belonging to the associated class field over F’
is a special case of the refined version of Zagier’s conjecture that the values
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of all partial zeta functions at arbitrary integer argument s = m can be
expressed in terms of m-logarithms.

For the case at hand, the same result, of course, also follows from the
theorems of Deninger (existence of elements in K, with required values of
regulator) and Bloch—Suslin (structure of K5 and description of the regulator
from Ks). Our proof, as well as giving an explicit formula, also has the
advantage of avoiding algebraic K-theory. It is possible in principle that this
method could be applied for higher values of m where it is not known that
the regulator may be expressed in terms of polylogarithms.

1.4.3 Theorem A reflects a general phenomenon. Another reflection of this
phenomenon is the following fact. For any elliptic modular curve over QQ
the value of its L-function at s = 2 can be expressed as a combination of
the values of a special function (Goncharov’s elliptic (1, 2)-logarithm [G2]), a
“relative” of our elliptic (1, 1)-logarithm. On the other hand, for a CM-curve
the value of the L-function is equal to a combination of the values of a certain
Kronecker double series [D1]. Therefore this Kronecker double series must be
equal to a combination of values of the elliptic (1, 2)-logarithm.

1.4.4 The paper is organized as follows. Section 2 defines the elliptic (1, 1)-
logarithm for an arbitrary elliptic curve and studies its elementary properties.
In Section 3 we realize the Kronecker series as an integral over the square of
the elliptic curve, and, for a curve with complex multiplication, reduce this
integral to an integral over the elliptic curve itself. In Section 4 we compare
the elliptic (1, 1)-logarithm and the dilogarithm. In Section 5 we check that
0 vanishes on the arguments of the dilogarithms on the right-hand side of
the Main Theorem, thus completing its proof. In the final Section 6 we
prove a more general formula, relating values of Iy at torsion points to the
dilogarithm.

1.4.5 Acknowledgments [ wish to thank Sasha Goncharov for explaining
his ideas about Chow polylogarithms. I am also grateful to Don Zagier and
Herbert Gangl for very stimulating discussions and computer experiments at
a crucial moment for this work during my stay at the Max-Planck Institut
fiir Mathematik, Bonn in 1997. I wish to thank the MPI for hospitality.

2 The elliptic (1, 1)-logarithm

In this section we define and study properties of the elliptic (1, 1)-logarithm.
Some motivation for considering this function is Goncharov’s integral repre-



Andrey Levin 181

sentation of the Bloch—-Wigner dilogarithm. This representation uses a special
case of a very general differential operator, that we call A,.

2.1 The operations A,

Definition 2.1.1 Let ¢4,..., v, be smooth functions on a complex variety
X. We set
An((pla S 7<;Dn) =
n—1
Altn (Z(-l)yipl 3g02 VANEIVAY 8g0n,j A a@n,]url VANERIVAY 890n> s (4)
=0

where Alt,, denotes alternation under the symmetric group .S,,, with a factor
of 1/(n!):

Alt, (F(zq,...,2,) = ] Z sign(o) F (o), - - - Tom))-

Remark 2.1.2 If ¢; = log|f;|* for analytic functions f;, then A, is the so-
called Beilinson-Deligne product of the f;, up to a factor 2 for odd n and 2i
for even n.

Remark 2.1.3 The (p, g)-component of A, equals (—1)‘1( ;’j_q;)! multiplied by

the (p, g)-component of Alt, (@1 dps A -+ Adey,).

An important property of the operations A,, is the following:

Proposition 2.1.4 Forn > 1
dAn (@1, .., 0n) = 01 AOYy A -+ N Oy + (=1)"L0p1 A Dy A -+ A Dy,

+ 3 (17000 A Ana(pr, - Bjr - pn)- (5)
j=1
The proof is a straightforward computation.

2.2 Goncharov’s integral representation of the Bloch—
Wigner dilogarithm

Lemma 2.2.1 (Goncharov [G1]) The value of the Bloch-Wigner diloga-
rithm at a point a # 0,1, 00 is equal to the following convergent integral:

1
L / As(log |22, log [1 — 2%, log |a — =),
47T Pl
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Proof Since we are integrating over a curve, only the (1, 1)-component con-
tributes. Thus we can replace Az by

1
- 6<log |z|*dlog |1 — z|* Adlog|a — 2|?
—log |1 — z|*dlog|z|* A dlog|a — z|?
+log |a — z|*dlog|z|* A dlog |1 — z]2>

We first prove that the integral converges. The integrand is smooth outside 0,
1, a and oo. Let (r, ) be a polar coordinate system near one of the first three
points; any term of the integrand is asymptotic to one of log |r|rdr A de or
r~irdr A dy, and is integrable. As Aj is trilinear and totally antisymmetric,
we can replace the three arguments (log|z|?, log |1 — 2|, 1log |a — z|?) by

(log |2[*, log |1 — z[* — log |2|*, log |a — 2|* — log |2|*) =
(log |2[%, log [1 — 27'[?, log |az™" — 1]);

the convergence at oo can be checked for these by the same considerations.
By Stokes’s formula we reduce the integral to

~ Tom (log |z|2dlog |1 — z|* Adlog|a — 2|?
—log|1 — z|*dlog |z|* A dlog |a — z|2>

The (1, 1)-component of dp; A dps is the negative of the (1, 1)-component of
(0 — 0)p1 A (0 — 0)gpo. Hence the integral is equal to

1

_ 2(9_ 9 2 _ J12(a_ A 2
— <10g|z| (@ —9)log |1 — 2> — log |1 — 2[*(® a>1og\z|)

A (0 —0)logla — z|*.
An easy calculation shows that
dDy(z) = —i<log 121(8 — ) log |1 — 2| — log |1 — 2|(8 — 8) log |z]).

Therefore the integral is equal to
—/dD2 A0 —3)log|a— 2 = /D2 d(0 — 3) log |a — =
4mi

As d(0—0)log|a—z|*> = 2001og |a—2|> = 4mi(0a(2) —eo(2)) and Dy(oc0) = 0,
this completes the proof. [
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Remark 2.2.2 It follows from the proof that the integral representation

S ordy(9) Do/ (p) = — /X Ay(log|f%log |1 — [ log o) (6)

47
peX

holds for any two meromorphic functions f and g on a compact curve X.

Remark 2.2.3 For any curve C

1
/A3<9017902a803>:/ §¢1ds02/\d<p3,
C C

so that this integral is zero if ¢; = const for some j.

Lemma 2.2.4 For any three distinct points a,b,c € C, we have

/ A;z(log |z — af’,log |z — b, log |z — ¢|*) = 47TD2<C - a>. (7)
Pl b—a

c—a

Proof We write r for the ratio —

Then

and make the change of variable x =

log |z — al* = log |z|* + log |b — a|?, log|z — b> = log |z — 1|* + log |b — al?
and log|z — ¢|* =log |z — 7> + log |b — a|*.

By the preceding remark, any terms that include the constant log |b — al?
vanish. This reduces the integral to that of Lemma 2.2.1. [

Remark 2.2.5 The integrand in (7) vanishes formally by antisymmetry if
any of a, b and ¢ are equal (we say formally because we are not really allowed
to multiply 1-forms if their singularities coincide). If only two of a, b, ¢ are
equal, then the r.-h.s. of (7) is also zero, since Dy(0) = Dy(1) = Dy(o0) = 0.
Along the triple diagonal the expression in (7) has a discontinuity. However,
it is continuous on the blowup of C? along the triple diagonal.

2.3 The elliptic (1,1)-logarithm

In this section we define a real-valued function £y :(a, 3,7;7), called the
elliptic (1,1)-logarithm, on the third power of an elliptic curve (more precisely,
on the fibered third power of the universal elliptic curve over the modular
curve), which is invariant under the diagonal action of the elliptic curve by
translations and antisymmetric under permutations of the variables.
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2.3.1 A natural generalization of the function log |z — a]? on P! to an elliptic
curve E. is the Kronecker double series

‘2 1 2mi T —T ' Xe(w)

L1(&7) = log|0(&,7) —(6-8° =~

2me e |wl?
weL

where ) denotes Eisenstein summation (see Weil [W]), and

o(e,7) = 97(75(’)) ¢"/12(z2 — 272) f[ll—qz —¢'z7h).

q = exp(2mit) (or, more precisely, ¢'/12

= exp(gmi7)), and z = exp(2mif)
(or, more precisely, 22 = exp(+mi€)). The notation £, for this function
is not standard. It is meant to emphasize that this function is the elliptic

1-logarithm.

2.3.2 The function £; is the Green function for the operator 99 on an
elliptic curve:

dO(L1(& 7)) =

Here 9y denotes the delta function at zero.

2.3.3 The function £, satisfies the distribution relation

Z £1aT Ly(B; M(1)).

a:

2.3.4 Any elliptic function f with ordg(f) = 0 has a “theta decomposition”

log | £(§)2 —log | F(B) = D" ordu(f) (£1(6 = a) = L2(B - ). (8)

Thus the natural elliptic generalization of the function D, (b;“) is the
following

Definition 2.3.5 The elliptic (1,1)-logarithm Li1(c, 3,7;7) is the conver-
gent integral:

% /ET A3<£1(§ — ), Li(§ = B), La(€ — 7)>'

The convergence of the integral can be checked by the same consideration as
for Dy(a).
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Remark 2.3.6 As above, only the (1, 1)-component of the integrand gives a
nontrivial contribution, so

1
Lisla i) = —g- [ Lie = )AL~ ) A AL~ ).
E,
We give another definition of this function based on Fourier expansions:

Lemma 2.3.7 Considered as a distribution, the function Ly1(a, B,7;7) is
equal to the following series

(1 —7)° S Xa (W) xs(W2) X (w3) (W — Wows)

16724 |w1|?|ws|?|ws|?

w1 +w2+wz=0

A series of this kind was introduced by Deninger [D2]. In contrast to his
case, however, our series is not absolutely convergent.

Proof By the preceding remark, we can compute the following integral

1 [ 77 " Xe—a(wn) "
81 2mi = |wy |?
< 3 Xe—p(w2) (Wad€ — deE))/\< 3 Xe—y (w3) (W3dE — w3d{_f)>
w270 |U)2|2 w3z #0 |w3|2

_ LT —?/ Z Xe—a(W1)Xe—p(w2) Xe—y (w3) (w25 _Eng)df/\dE-

8m 2w w010 \wll "LUQ’ \w3]2

The integrals of the terms with w; + ws + w3 # 0 vanish, as integrals of
nontrivial harmonics over a torus, so we get

17-7 > Xa (W)X (W2) X (w3) (waw03 — Waws) /dé A dE

87 i = [wy [2|ws|?|ws|?
w;7#0

_ ToT Xa(wi)xp(w2) Xy (w3) (W03 — Wows) _
a 87T 27 Z w1 |?|wa]?|ws|? X (=7 =7).

w1 +w2+w3=0
w; #0

O

Remark 2.3.8 This Fourier series is antisymmetric under permutations of
«, 3 and 7, since

1 1 1 1
Wollz — Wallg = 3 Wy Wy Ws for wy + wy + w3 = 0.
W, Wy Ws
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2.3.9 The function £;, is smooth outside the diagonals; this follows from
the general formula for differentiation of an integral with respect to a para-
meter. £, ; is zero on the diagonals, because Aj is antisymmetric.

Lemma 2.3.10 £, ; is continuous on the complement of the triple diagonal
a=L0F=r.

Proof We prove that

}tiH(l) Liq(ta,tp,v;7) =0 for v # 0.

We choose some rather small € and represent the integral as the sum of the
integral over the disk of radius € around 0 and the integral over the comple-
ment of this disk inside the elliptic curve. The second integral tends to zero,
as the integral of any term of A3 converges and As is antisymmetric. Inside
the disk, £1(€ —ta) equals log |£ —ta|* + (&, ta), where ¢(€, ta), is a smooth
function, the same is true for £;(§ — t3). Substitute this decomposition into
As; we get several types of summands: 1) all the arguments of A3 are smooth,
2) one argument is singular and 3) two arguments are singular. In the first
two cases the integral tends to zero for the same reason as above. To estimate
the last summand, perform the change of variable z = t~1£. We get

[ a(togle ~taPlog s — 157, £a(6 - )
l€l<e
- /| . As(logle = allog |z — 3P 401z =) = £2(-)
El<t—1e

[ Ayflogle — alilog e~ t87, £a(~).
lgl<t=te

and the second integral tends to zero because £1(—7) is a constant.

For small ¢, the first integral can be represented as a sum of the integral
over the disk of radius vt~'¢ and that over the annulus vVi—le < |2| < t7le.
In the second integral, replace log |z — |* by log|z — ]* — log |z — a|®. The
integral over the disk is small since £;(tz — ) and also its derivatives are
small; the integral over the annulus is small because log |z — 3|2 —log |z — a?|
and its derivatives are small. [J

Lemma 2.3.11 Let o, 8 and v be points on an elliptic curve, not all three
coincident. Then the limit of L£11(ta, t8,ty;7) ast — 0 equals Do <L>

(6%
B—a
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Proof We fix some rather small ¢ and represent the integral as the sum
of the integral over the disk of radius € around 0 and the integral over the
complement of this disk inside the elliptic curve. The second integral tends
to zero, as Aj is antisymmetric. Inside the disk, £;(§ — ta) equals log|€ —
tal® + ¢(&, ta), where (€, ta) is a smooth function,and the same is true for
L1(¢€ —tf) and for £1(£ — t7y). As in the proof of the preceding lemma, only
the summand Ajz(log | — ta|? log|€ — t3|% log |€ — tv|?) gives a nontrivial
contribution in the limit. Therefore

lir%ﬁl,l(ta, L3, ty;T)

1 .
= —lim As (log € —tal?, log |€ — tB)?, log |€ — t7\2>
AT 20 Jigj<e

1 _ _ _
=~ lim Ag(log |71¢ — af?,log [¢71¢ — B2, log [t ™'¢ =4

47 t—0 l¢|<t—1e
1

— 1= [ 4a(10glz ~ aftlog o — AP log |z - )
T Jc

“n(72).

Remark 2.3.12 £, («, 3,7;7) is clearly invariant under “diagonal” trans-
lation of the arguments and changing the sign of the arguments, so that the
elliptic (1,1)-logarithm is a function on the moduli space M 3 of curves of
genus 1 with three marked points.

3 From the Kronecker series to the elliptic
(1, 1)-logarithm

The reduction of the Kronecker series Ky to the elliptic (1, 1)-logarithm for an
elliptic curve with complex multiplication splits up into two steps. We first
represent Ko(&;7) as an integral over the square of the elliptic curve. This
representation is valid for any elliptic curve and for any point £ on it. We then
reduce the integral over the square of the elliptic curve to an integral over the
elliptic curve itself; this is possible for a curve with complex multiplication,
and uses the existence of an extra projection of the square of the curve onto
itself.

3.1 An integral representation of the Kronecker series

We start from the simplest example which illustrates the main idea of this
representation.
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Proposition 3.1.1
Ko(a; 1) =

T—T

OLy (1) OLy(n2) dy Adiy dna A dT,
— AN\ —=.
om aﬁz T—T T—T

(9)

[ erta=m—m)

ExFE;

271
Proof We use the Fourier expansions of £; and its derivatives
T—F/<_T_F ! Xanlﬁz(w1>> x
2mi 2mi e |wy |2
w1 €L

(5 ) (- 5 ) 20 220

T—T T—T

wo €L ngL

The integral of the term with w; # ws, w; # w3 vanishes, as an integral of a
nontrivial harmonic over a torus, so we get the integral

T—?/( T—7 'xa(wl))< 1 )(_ 1 )dm/\dﬁl/\dm/\dﬁz

2mi 2mi e |w]? —w; —-w,/) T—-T T—7T
w1 €L

At the end of this section we discuss a more symmetric representation of
ICo for any 7 and &; this result will not be used further. We now state the
main result of this section.

Lemma 3.1.2 Let 7 be a fized point of M = (25) #0,1; we set m = det M
and n = det(M —1). Write n3 for the expression ny + M-(n2) — «a and n4 for
m +ne — (. Then

[ Astetm). £a6m). 1) (L) = FA =Dy i,

E]Ag (£10m), £302), £100)) (TEEZ) = el — 7o~ ;7
]As(a(nl), £3m) £10n) (T2 L) = AT D 01 () — a7
] A1), £40s), £ 0) (LY =TT Dy 5 — i),

E2

(10)
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Proof We only prove the third equation; the others can be proved by
the same considerations. The last factor of the integrand has type (1,1)
and is closed, so we can replace the expression A (El(nl), L1(n3), 51(774)) by
%£1<7]3)d£1<7]1> A dLi(ny). Thus we can calculate the integral

1 T — T x~ X+ M, (52)—a(W3)
§/<_ o %ﬁj ; |J;|2 >X
((Z’ Xm(wl)dm> A (_ Z’ X -+no—6(wa) (A7, +dﬁ2)>
e w1 e 0.

Wy
w1 EL wyEL

Wy T—T

i <Z; %ﬁ) A (_ Z; X +no—p(wa) (dy + dng))> A digy

w1 €L waEL

Since xar, (m2)(w) = X, (M (w)), only the terms with ws + wy + wy = 0 and
M (w3) + wy = 0 give nontrivial contributions in the integral. So we get

L =7 g xals) ( 1 X p(—M(ws))

2 2w el lws|? (M —1)(w3) —M (ws)
_ 1 X—B(_M(w?»)) dnpy Adyyy dmp A d7,
OF—Dwy) M) >/ e

_ (=7 Z’ Xu@-a(ws)

4
S ws

1 1
<(c7'—|—d— (T +d) (cF+d— 1)(c7’—|—d)>

_ 1T —7)e(r—7) Z’ XM (B)—a(W3)

2 2mi nm lws|*

ws€EL
mic(T — 7T)

= DA T ke, (ML (8) — 7).

mn

We used above the following simple formula: for any isogeny of F. to itself,
ler +d|* =ad —bc=det M. O

Remark 3.1.3 For general values of 7 any isogeny of E, to itself is multi-
plication by some integer, and the r.-h.s. vanishes. Hence the result is only
interesting for an elliptic curve with complex multiplication.
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3.1.4 The function %ICQ can be treated as a component of the vector

valued function
Z’ xe(w)
w3w

weL

T—T ’X&(w)

L3(&7) = > |
weL

Z’Xg(w)

W

weL

(the elliptic trilogarithm), taking values in the symmetric square S?(H) of the
homology group H of the elliptic curve E, with complex coefficients. This
space is isomorphic to a direct summand of the second cohomology group of
the square of the elliptic curve. A “natural” basis of this space is

£ = dm, A dm, fy = dm A drjy — dn, Adi, fy = dm A dnp
-z (r —7)2 A G S P
Proposition 3.1.5
J1
£al6m) = [ Aa(Clm). Latm) Lalm+m— ) A | B | ()
2 f3
ET

The proof is a straightforward calculation.

3.2 Reduction to the elliptic (1,1)-logarithm

3.2.1 Consider the current ® = 55 Ay (L1(m), L1(n2), L1(n3), L£1(n4)) on EZ,
where, as above, n3 = n; + M, (n2) — a and ny = 1y + 1y — 3 for some isogeny
M = (2%) # 0,1. The wedge product of currents is not defined, but for
general o and 3 the divisors of the singularities of £,’s are in general position,
and the wedge product is well defined; the formula for the differential of the
wedge product also holds.

3.2.2 The differential d® of ¢ equals

# X (—5851(7]1) N As <£1(T]2), L1(n3), ﬁl(%))
+ 00L1 (1) A As <£1(771)7 L1(n3), /51(774))
— DOL1(n3) A As <£1(771), L1(n2), 51(774))

L For, (m) A Ag(L1(m), Lo (), £1(ns)

).
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because the (4,0)-part and the (0, 4)-part vanish on a surface. We split the
00L; into a d-function part and a smooth part. Integrals with d-functions are
integrals over the elliptic curve and are equal to sums of values of the elliptic
(1, 1)-logarithm. Integrals of smooth parts of the 0L, are calculated in the
preceding lemma.

3.2.3 We write By,..., B, for the d-parts of the four components of d®
and Bi,..., B} for the smooth ones. We first calculate the integrals using
0-functions:

/31 - i Ag(ﬁl(m),ﬁl(ng),ﬁl(m)>

2772 |771 =0

= % i As <£1(7I2)7 Li(Mng — ), L1(ng — 5))
- % i Z Az (£1<772>7£1(772 —a), L1(n2 — ﬁ))

T o/:Mr(a)=a

= —4q Z 51,1(070/76)'

o' M- ()=«
The same consideration shows that

B2 - 42.£1,1 (07 «, 6)7

Bg = —4Z E [,171(06/, 0, ’}//>, and
o :M; (o )=a
V:(My - 1)) =08

By =4 Z L£11(0,3,7).

Vi(Mr—1)(7)=a—B

3.2.4 Since the smooth part of 0L (&;7) equals 27?2'%%, the integrals of
B} were already calculated in (10).

3.2.5 The integral of the differential of a current over a compact variety is
zero, so that we get > B; = — > B., and we have proved the following result:

Proposition 3.2.6 Let 7 be a fixed point of M # 0,1, with m = det M and
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n =det(M — 1). Suppose that o # 0 and 5 # 0, a, M, (c). Then

ot —7)

T ( Ly (casm) Ko=)+ Ko (1, (8) —a17) + K8 7)

- _ Z L£11(0,a,8) 4+ L£11(0,, 5)

o'eM 1 a)
- Z L11(a,0,7) + Z L11(0,8,7").
o'eM~a) yeM-1)"1(a-pB)

Y EM-1)" (a=p)

As the function Iy is continuous, we can “degenerate” this formula:

3.2.1 Theorem. Let 7T be a fized point of M # 0,1 and m, n as above.
Then

c(r —7) <m—|—n+1

yr Ko(—a;7) + ICQ(O;T))

- - Z El,l(ala 07’7,)7 fOT a 7é 0; (12)
a’'eM~Ha)
v E(M-1)" (a)

mn

c(r—=7)(m+1)(n+1)
41 mn

Ko(0;7)

ad — bc , ,
- _D2(07+d) - Z »Cl,l(a707,7)' (13)

o’e€Ker(M)\0
v €Ker(M—1)\0

Proof The first formula is the result of substituting 8 = 0; and the second
one is the limit of the first as a — 0. This completes the proof of Theo-
rem A. [

4 From the elliptic (1,1)-logarithm to the di-
logarithm

In this section we relate the elliptic (1, 1)-logarithm to the dilogarithm. Specif-
ically, we express the combination £;1(0, o, 5;7) + £11(0, 0, —3; 7) as a sum
of dilogarithms for any torsion points o and 3 on any elliptic curve E,. The
proof uses the representation of an elliptic curve as a covering of degree 2 of
the projective line.
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4.1 The dilogarithm as a combination of elliptic (1, 1)-
logarithms

We start by expressing the dilogarithm as a combination of elliptic (1,1)-
logarithms.

4.1.1 The Weierstrass gp-function maps the elliptic curve as a double cover
of P!. Suppose that +a on the elliptic curve are the inverse images of a point
a on P!, that is, p(+«a) = a; similarly, suppose that p(+8) = b, p(+7) = c.
Then by 2.2.4,
D, <Z — Z) = ﬁ /Pl As(log |z — al?, log |z — b|?, log |z — ¢|?)
11
“35 ),

The extra factor of 1/2 reflects the number of branches.

As(log [p(&) — p(@)]?,log |p(&) — p(B)*,1og (&) — (7))

4.1.2 The “theta decomposition” of 2.3.4 implies that
log [p(€) — p(@)|* = L1(§ + a) + L1(€ — a) = 2L1(€) — 2L1().

We substitute this expression into Az and integrate. A straightforward com-
putation gives

Lemma 4.1.3
b <%> = L, B,7) + L1a(=a, 8,7) + L1a(a, =f,7)

+ Liqa(a, B, =) — 2<£1,1(0, B,7) + L11(0,=5,7) + L1,1(,0,7)
+ ‘Cl,l(_aa 07 7) + £1,1<a7 ﬂ? 0) + ‘Cl,l(_aa ﬂ? 0)) . (14)

4.2 The elliptic (1,1)-logarithms as a combination of
dilogarithms

Now we combine the expressions of the preceding lemma to cancel almost all
terms on the r.-h.s.

Theorem 4.2.1 For any two nontrivial torsion points o # £ on an elliptic
curve E., say ma =nf =0 for some m,n € N. Then

L p(ka +18) — p()
>3 2 o)
= _an(ﬁl,l(&; ﬁ, O) + ﬁl,l(_&a ﬁa O)) (15)
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Sketch proof We must check that all except the two last terms on the
r.-h.s. of (14) cancel after summation. We show that the first one cancels:

Lia(a, B, ka+18) = Lia(a —(a+8),0 — (a+ f), ka+ 13 — (a+ 3))
= L1a(=0,—a, (k= 1a+ (I-1)F)
= L1a(0, o, (1 = k)a+ (1 - k)B)
=Ly, 3, (1 = k) + (1 = k)f);
hence the first summands with arguments (k,[) and (1 — k,1 —[) only differ
by the sign and the first summands cancel on averaging. The arguments for
the other terms are similar.

This completes the proof of Theorem B and hence of the formula for
KC2(0,7) in the Main Theorem.

Remark 4.2.2 We have proved that the combination
»Cl,l(aa ﬁ’ 0) + Ll,l(_aa ﬁa O)

is equal to a sum of dilogarithms for torsion points a and (3. It is even true
that the single term £;;(«, 5,0) is equal to a combination of dilogarithms;
but we do not need this in this expression for the Main Theorem, and it is
rather complicated. We will derive it in Section 6.

5 Vanishing of the map ¢

In this section we prove that the argument of the dilogarithm in the Main
Theorem belongs to the kernel of the map ¢ of 1.2.3.

5.1 Values of the #-function at torsion points

5.1.1 The theta function
"t 0(¢,7) 1/12/ 1 1 - 1
0(&,7) = 2L =q /1222 — 272 1—¢2)(1—-¢z)
N TES E
is not elliptic. It is only quasiperiodic”
(¢ +1,7)=—0(¢,7) and O(E+7,7) = —2"'q > X O(¢,7);

but for any torsion point & = r7 + s with r,s € %Z of order N, we can
redefine the value of the theta function at this point by the formula:

0¢)(7) = 2> g Ao(E 7).

Translating the argument by a point of the lattice multiplies this value by
some root of unity. We write = for equality modulo multiplication by a root
of unity.
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Remark 5.1.2 If 7 is imaginary quadratic over Q, the numbers 0[¢](7) are
algebraic.

5.1.3 We have the theta decomposition

Q(Oé;T) _ p(ﬁ”_) _ Q’(O,T)Z ie[

S
|
=)
>
X
N
S
_I_
=
>

for any two torsion v and 3 points.

5.1.4 Let a be a torsion point on the elliptic curve Ey;(;). Then

[T 9131(r) = 6le)(M(r)) if a # 0; and

BeM~la

7(0,7) x H

BeKer M\0

ad —bc ~
"0, M )
X (0, M(7))

D

B](r) =

5.2 Computations

5.2.1 We first calculate the value of the map ¢ on —%:2&3

() —pla)\ [ e0) — pla) ©(7) — 9(B)
5(mm—mw)‘(mm—pmJA(mw—pw0
E(@a—ﬂX@w+ﬂX@W>A(@ﬁ—ﬂX@ﬁ+ﬂX@®j_
Bla — 8] x fla+ B] x Gly)2 Bla — 8] x fla+ ] x G[y]2

Thus the answer is the same as the result of the following procedure:
1. Define the map v by the formula

{o.8,7) = —({a =By A {8 =} +{B-} A {7 -0}
+{y-a}A{a-B}).

2. Apply v to the arguments of the function £;; on the r.-h.s. of (14).

3. Apply the map A%8: & A& — 0[] AG]&] € AP C* to the result of the
previous step.
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5.2.2 The map /\2 0 o v satisfies the same properties as £;; under transla-
tions or permutations of arguments. Hence after summation over v = ja+kpg3,

we get
& plka + 106
(ZZ{ o(3 >—)p<a>( )}>
= 2mnA2fo v({a, 5,0} +{—a,3,0})
= 2mn(8) (9l — 8) A 018] + 918 A 8la] + fla] A e — 5]
+0la+ 8 AB[B] + 018] ABla] + 8la] A Bl + ﬁ]).

5.2.3 Finally, we perform the last summation:

5( 2 ZZ{ kawp(a)()})

acKer M\O k=1 [=1
BeKer(M—1)\0

=d4mn Y <§[a — B A BIB] + (818] A Bla] + 8la] A Bla — 5]) .
acKer M\0
BeKer(M—1)\0

now sum the first terms over the «, the second terms over the a and 3 and
the third terms over the 3. We get

4mn< S (A8 A 019) - 9) 1)

BeKer(M—1)\0
(a—1)(d—1)—bc ad — bc
A
* ( ct+d—1 cT +d

+ Y (é[a] AG[(M —1)a] — la) A 5[@]))

acKer M\0
(a—1)(d—1)—bc ad — bc
=4 A\ .
mnx( ct+d—1 ct+d
This expression is the negative of § of the first term 4mn{“d bc} in the
formula (14).

6 Values of the Kronecker double series at
torsion points

In this section we express the value of the Kronecker double series Co(cv; 7)
at a CM point 7 and a torsion point a on the elliptic curve E. as a sum
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of dilogarithms. In (12) we proved that this value of the Kronecker double
series can be reduced to a combination of £;;(c/,0,7") (with o/ € M~(«)
and 7' € (M —1)7!(a)), and K5(0,7). So we will prove that £;1(a/,7/,0)
equals a sum of dilogarithms.

6.1 Reduction to “standard” functions

6.1.1 Let a be a torsion point of exact order N(a) = 27 x Ny(a), with
odd Ny(«). Denote by f, a function with divisor N(a) x (o — 0). Clearly,
log | fo(n)|> = const +NL;(n — o) — NL;(n). This yields the formula

Lemma 6.1.2 For any three distinct torsion points o, 3 and vy

i [, Ao fo 1) = NNV G) %
<£1,1(04, B, ’Y) - 51,1(0>5,’Y) - 51,1(04, 0»7) - 51,1(04, s, 0)) (16)

Lemma 6.1.3 For any distinct nontrivial torsion points o and (3 on the el-
liptic curve E,

=

(a) N(B) 1

N(a)?N(B)2N (ka + 15)

/ As(fos f52 Frasis)
E.

= —£171(047 ﬂa 0) (17)

e
Il

1 I=1

The proof is parallel to that of (15). We now reduce the integrals on
the 1.-h.s. of the previous equation to “dilogarithmic” integrals. First, we
have a decomposition of f,(n) into a product of “standard” functions g =
o(n—E&)—p(£). Let A = M) be anatural number such that 2 =1 mod (Np)
and write aq for the point 2°q.

Lemma 6.1.4
_22 r . ; 2p—i=1(2X 1)
faln)” ™ = const [] (0(n — 2'a) — p(2'a)) X
i=0
Al . . 2)\—j—1
11 (o(n —27a0) — (2 ) (18)
j=0

Proof Compare the divisors of both sides. [
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Remark 6.1.5 If F' is a function on an elliptic curve and £ a torsion point,
we can define the operation of averaging with a factor 2 by the formula

AVS(F)(E) = 32 F(¢)

p(§)—1 p(E)+A(E)—1 9-i
= TR+ Y, ——=F@9. (19
o Z 2 1 — 2-A(9) :

j=0 i=p(&)

The last equality is nothing more than the formula for the sum of a geometric
progression. Hence we can rewrite the statement of the preceding lemma
formally as

l08(£n)) = ~ ) Avg log(o(n — o) ~ p()))

the superscript a denotes the variable over which we average.

6.2 From standard functions to dilogarithms
Lemma 6.2.1 Let k C K be a quadratic field extension, and write o for the
involution of K over k. Then
9° -9 fo=r 9°—9
fx L9 g LTS g g 9
f97—gf° 9f7—rfg° f97—gf°
forany f,g € K\ k.

The proof is obvious.

€ k.

6.2.2 We apply this lemma to the extension C(P!) C C(E) and “standard”
functions. The involution ¢ is given by changing sign of the argument of a
function.

Lemma 6.2.3 The “standard” functions g.(n) = p(n—a)—p(«) and gz(n) =
p(n —B) — p(B8) satisfy

95(n) — gs(n)

9a(mg5(n) — g9s(mga(n) p(n) — Cla, B)’

B) (pla + B) — p(a)) + p(B)¢' (a) (p(a + 3) — p(B))
¢'(8) (pla+8) — pla)) +¢'(a) (pla+B8) —p(B)
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Proof We consider separately the numerator and denominator on the l.-h.s.
The numerator g — gg is odd, so it vanishes at half-periods. On the other
hand it has double poles at n = +3. Hence,

95 = 98 =X 1) — (B

The constant ¢ can be calculated by considering the leading term at n = j,
and is equal to —g'(5).

The denominator g.g% — gsgs is also odd. It has a zero of order > 2 at 0,
and hence (by oddness) of order > 3. On the other hand, it has double poles
at n = £a and £(. Therefore,

%%-%%zdx(

for some constants ¢ and C(a, ). These constants can be calculated by
computing the leading terms at a and (;

¢ = —(pla) — p(0)) (¢'(B) (pla + 8) — pla) — ¢'(a) (pla + B8) — p(B))).

0

6.2.4 We write [, for the function g(é;gﬂg
993 =989

4,5 of the function F,s are defined by the condition p(+&.5) = C(a, 3)
(and @' (£€,5) = £+/4C(a, B)3 — cs(T)C (e, B) — c6(7), where ¢4 and 5 are
the coefficients of the Weierstrass equation).

. Thus the “non-obvious” zeros

Lemma 6.2.5 For any three points o, 3 and v on an elliptic curve

Ga Ngg N gy +9a NG5 A gy
= (9aFop) N (98Fpa) N gy + (90 Fap) N (95Fsa) N g7
~ ((90Fer) 1\ Fita A (92 Fa) + (95 Fa) A Fita A (65 Fr)
—wAw%M@ﬂMMMMWWA%%DJMM%Mwﬁ
+<(gagg) A Fga A Fia+ Foy A Fa A (9495) + 2 X (Fay A Fga A Fia)

+ Fap N (9895) AN Fop + Fop N Figy A (9497) +2 X (Fap A (Fy) A Fwﬁ))

The proof is a straightforward computation.
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6.2.6 The first six terms on the r.-h.s. of the previous equation are of the
form @ A (1—¢) A1, so that by (6) the integral of A3 of any such term equals a
sum of dilogarithms. The last seven terms contain only o-invariant functions,
so the corresponding integrals can be reduced to integrals over CP! and are
also equal to combinations of dilogarithms. On the other hand, the integral
of Asz of the second term on the Lh.s is equal to the corresponding integral of
the first one for obvious geometric reasons.

6.3 Results

If we combine all previous results, we get the following.

Theorem 6.3.1 For any two distinct nontrivial torsion points o and (3 on
an elliptic curve, we have

£1,1<045ﬁ70> = DQ(Q)(aaﬁ))> (20)

where

. ]— fo B Y .
(I)(Oé, ﬂ) - OI‘d(Oé) ord(ﬁ) ’YEWZBAO AV2 AVZ AVZ (I)l(a7 ﬂv 7)7

here (o, B) denotes the subgroup generated by o and 3, AVS(F)(€) is defined
by (19) for a torsion point &, and

0i(05.7) = (Gasl)}e + 8{ =2}

+ Alto (2o (D)2 + 2{Cur (=5)}2 — (G (E0)}2 — {Gor () }2)
N 40}’%,@7( { P(27) — p() }2> ~4Cye, N( {C(a,v) — p(a) }2>

o(8) — p(a) o(8) — p(a)
27) — ol Cla,v) — pla
~ 2 ATt { 6%7 7)) —p@(@z) },) + At (2 cga, gi - igai ),
(7) = Cla,7) (27) = C(a,7) C(a,7) = p(20)
s o e ép(? =t G- Zéa> h) ’

where

(p(n) — p(a))?

Here C(a, 8) and K (o, B) are as in Lemma 6.2.3., the points £€,5 are solu-
tions of the equation p(£&.p) = C(a, B); Altap,Alta ., Cyc, 5., denote the
(anti)symmetrization with respect to Sa, Ss, As (with a factor 1).

Gap(n) = (@(n —a)— p(a)) x K(a, B)
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Theorem 6.3.2 Let 7 be a fixed point of M = ( CCL Z ) #£0,1; m =det M,

n =det(M —1). Let « be a torsion point on the curve E.. Then

o(r=7)/m+n+1 A

(i )( Icz(a;T)+/Cz(0;T))=Dz< ) CI)(O(,”y)), (21)
o'eM~a)
Ye(M-1)"Ya)

mn

where ® is defined in the preceding theorem. The arqgument of the dilogarithm
belongs to the kernel of the map 6: {z}s — xz A (1 — ).

We have proved all statements of this theorem except the last one. It can
be proved by the same consideration as in Section 5.

References

[D1] C. Deninger, Higher regulators and Hecke L-series of imaginary
quadratic fields. I, Invent. Math. 96 (1989) 1-69. II, Ann. of Math.(2)
132 (1990) 131-158

[D2] C. Deninger, Higher operations in Deligne cohomology, Invent. Math.
120 (1995) 289-315

[G1] A.B. Goncharov, Chow polylogarithms and regulators, Math. Res. Lett.
2 (1995) 95-112

[G2] A.B. Goncharov, Deninger’s conjecture of L-function of elliptic curves
at s = 3, Algebraic geometry, 4 J.Math.Sci. 81 (1996) 2631-2656

[W]  Andre Weil, Elliptic functions according to Eisenstein and Kronecker,
Springer-Verlag, Berlin-New York 1976

Andrey Levin,

L. D. Landau Institute of Theoretical Physics,

Russian Academy of Sciences,

117940 Moscow, Russia

e-mail: andrl@landau.ac.ru and alevin@mpim-bonn.mpg.de






On Shafarevich—Tate groups and the
arithmetic of Fermat curves

William G. McCallum Pavlos Tzermias

To Sir Peter Swinnerton-Dyer on his 75th birthday.

1 Introduction

Let Q denote the field of rational numbers and Q a fixed algebraic closure of
Q. For a fixed prime p such that p > 5, choose a primitive pth root of unity ¢
in Q and let K = Q(¢). If a, b and ¢ are integers such that 0 < a,b,a+b < p
and a +b+c =0, let I}, denote a smooth projective model of the affine
curve

yP =21 —2)° (1.1)

and let J, ;. be the Jacobian of F, ;.. Then J,; . has complex multiplication
induced by the birational automorphism (z,y) +— (z,(y) of F,p.. Let A
denote the endomorphism ¢ — 1 of J,p.. Note that A’~! is, up to a unit in
Z[¢], multiplication by p on Jg ..

We are interested in the Shafarevich-Tate group of J,;. over K, which
we denote simply by III. In [McC88|, the first author studied the restriction
of the Cassels—Tate pairing

I[N x II[\] — Q/Z (1.2)

and showed that III[A] is nontrivial in certain cases depending on the reduc-
tion type of the minimal regular model of F, ;. over Z,[(]. The purpose of
this paper is to extend those results by carrying out higher descents, and
to derive some consequences for the arithmetic of Fermat curves using the
techniques of the second author.

First we recall the main result of [McC88]. The possible reduction types
for F, ;. are as shown in Figure 1 [McC82], with the proper transform of the
special fiber of the model (1.1) indicated. The wild type is further divided
into split and nonsplit, according to whether the two tangent components are

203
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Tame Wild
. Y
proper

transform y
multiplicity 2 [
‘ ‘ ‘ proper {

. , transform FaN

p + 1 :f/r ‘

i

Figure 1: Reduction types of F, ;.

defined over the finite field F, or conjugate over a quadratic extension. The
reduction type can be computed as follows. For a rational number x of p-adic
valuation 0, let ¢(z) = (2?1 — 1) /p, viewed as an element of F,. Then F,
is

tame if —2abcq(a®’ct) =0,

wild split if —2abeq(a*t’c) € F)2,

wild nonsplit  if —2abcq(a®b’c?) ¢ F)2.
Let My be the set of finite places of K and let w denote the unique place of
K above p. Define

U={ze K*/K*”:v(x) =0 (mod p) for all v € Mg},

V= KX/KXP. (1.3)
Let 7 be the uniformizer of K, defined by
a7l = —p and ] iC =1 (mod w). (1.4)

If k: Gal(K/Q) — Zj is the Teichmiiller character, let V(i) denote the
intersection of the x‘th eigenspace of V with the subgroup of V generated by
units congruent to 1 modulo 7*. Thus V(i) is one-dimensional if 2 < i < p.

Theorem 1.1 ([McC88]) Suppose that F,p. is wild split, p = 1 (mod 4),
and the image of U is nontrivial in both V((p—1)/2) and V((p+3)/2). Then

I[N/ AII[N?] ~ Z/pZ & Z/pZ.

The condition on U is satisfied if p 1 B,—1)/2B(p+3)/2, Wwhere By, is the
kth Bernoulli number. As noted in [McC88], the technique used to prove
Theorem 1.1 applies to the pairing

I[\?] x HI[\] — Q/Z (1.5)
and yields information about ITI[A?.
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Theorem 1.2 Suppose that either of the following conditions is satisfied:
(a) Fop. is wild split and p =3 (mod 4);

(b) Fyp. is wild nonsplit or tame and the image of U in either V((p+1)/2)
or V((p+3)/2) is trivial.

Then the pairing (1.5) is trivial. Thus TI[N?]/AII[N3] = 0, that is, TII[A\3] is
a free module over Z[C]/(A\3).

As discussed in [McC88], the hypothesis on U in condition (b) of the
theorem is quite mild, since for U to be nontrivial in V (k) with £ > 1 and
odd requires that p divides B,_.

Corollary 1.3 If one of conditions (a) or (b) of Theorem 1.2 is satisfied,
and if |I[p™]| < p3, then UI[p>] = 0.

Under the conditions of Theorem 1.2, it is natural to ask which occurs
more often: |I[p]| = 0 or [I[p]| > p*. To explore this question, we compute

HI[\*] x HI[\] — Q/Z. (1.6)

Theorem 1.4 Suppose that p > 19 is reqular, p = 3 (mod 4), F, . is tame
or wild nonsplit and

q(a®t°c?)® + abeB, 3 Z0 (mod p). (1.7)

Then the pairing (1.6) is nontrivial. Thus I[\3] # 0 (and hence, by Corol-
lary 1.5, [I[p™=]| > p?).

For example, the curve y'¥ = z%(1 — z) satisfies the conditions of the theo-
rem. Modest numerical experiments suggest that about half the curves satisfy
the conditions. More precisely, there are about p/6 isomorphism classes of
curves Fy; . for a given prime p, and heuristically about half of them are tame
or wild nonsplit. The incongruence (1.7) is usually satisfied for these curves;
for example, it is satisfied for all such curves if p < 100 (and p =3 (mod 4)).

The next result shows that, in certain cases, one can combine Theorems 1.2
and 1.4 to describe the exact structure of I [p™]:

Theorem 1.5 Suppose that p, a, b and ¢ are chosen to satisfy the hypotheses
of both Theorems 1.2 and 1.4. If, in addition, the free Z[(]/(N\*)-module TIT[\?]
has rank 2, then

II[p™] = I[N’ = (Z[¢]/(X*)).

In Section 6 we establish the following application of the above results:
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Theorem 1.6 Letp=19,a=7,b=1. Then
1 ] = (Z[C]/ ()
2. The Mordell-Weil rank of J7 1 _g over Q equals 1.

3. The only quadratic points (i.e. algebraic points whose field of definition
is a quadratic extension of Q) on the Hurwitz-Klein curve Fr; _s and
also on the Fermat curve X' + Y + Z' = 0 are those described by
Gross and Rohrlich in [GR7S).

We also note that, by combining Theorem 1.4 with Faddeev’s bounds in
[Fad61], one gets that the Mordell-Weil rank (over Q) of any tame or wild
nonsplit quotient of the Fermat curve Fig or Fy3 is at most 2.

Lim [Lim95] has also stated a result attempting to improve on [McC88]
in certain cases. However, in Section 6, we show that the hypotheses of
Propositions A and B of [Lim95] are never simultaneously satisfied.

2 Formulas for the pairings

We recall the situation and notation of [McC88|. For ¢ € O and F a field
containing K, we write § = d, r for the coboundary map J(F) — H'(F, J[¢]).
The ¢-Selmer group Sy C H'(K, J[#]) is defined to be the subgroup whose
specialization to each completion K, of K lies in the image of d4 k,. It sits
in an exact sequence

0— J(K)/¢J(K) — Sy — I[¢] — 0.
For ¢, € End(J), we have a pairing
Sy % S; — Q/Z, (2.1)

described in [McC88], which is a lift of the restriction of the Cassels pairing
to III[¢] x II[¢)]. An expression for the pairing (2.1) is given in [McC88],
under a certain splitting hypothesis.

We use[McC88] to derive formulas for the pairings (1.5) and (1.6). The
formula for (1.5) is a straightforward consequence of Theorem 2.6 in [McC88];
the formula for (1.6) takes more work. The point is that J[\3] C J(K)
(Greenberg [Gre81]), so that it is possible to express the pairings (1.2) and
(1.5) as purely local pairings at w, as explained in [McC88|. However, by
[Gre81] and Kurihara [Kur92], the A*-torsion on J, 4. is not in general defined

over K, introducing an essentially global aspect to the calculation of (1.6).
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For technical reasons, it is convenient to replace A\ with an endomorphism
(which we also denote by \) that is congruent modulo A° to the uniformizer
7 defined by (1.4), since then

M =g(0)A (mod N), §¢€ Gal(K/Q).

In particular, we have A = —) modulo A\°, and we will often replace A with
—\ without mention in what follows, in cases where we are dealing with a
module killed by A\°. Furthermore, it suffices to prove Theorems 1.2 and 1.4
with this new choice of X. Since A/A is a unit, III[\] = II[\], and we can
proceed by computing the pairing (, )x mentioned in (2.1) with ¢ = AF and
=\

The local formula for the Cassels—Tate pairing is expressed in terms of
certain local descent maps as follows. Given a p-torsion point @ in J(K)
we denote by Dg a divisor defined over K (@) representing () and by fo a
function on F,; . whose divisor is pDg. Evaluating fg on divisors induces a
map tg: J(F) — F*/F*? for any field F' containing K (Q).

By [Gre81],

KUPN) =K and K(JN]) =L=Kn"), (2.2)

where 7,_3 is a generator for the xP~*-eigenspace of the cyclotomic units in K.
Let A € Gal(L/Q) be a subgroup projecting isomorphically to Gal(K/Q).
For i = 1,2, 3,4, we choose points P; of order A\ on J and a generator o for
G = Gal(L/K) such that

1. Pj is the point represented by the divisor (0,0) — oo;
2. AP, =P, for1=2,3,4;

3. P, is an eigenvector for the action of A with character x!~%;

4. 0'P4:P4+P1.

For i < 4, let eyi(P,Q) be the \* Weil pairing on J[\]. We have an iso-
morphism J[X] ~ p! defined over K(P;) (and thus over K for i < 3), given
by

QH (6)\1‘(Q,P1),...,6/\1'(@,])7;))- (23)
With this identification, by [McC88, Lemma 2.2], we have

51' = 5)\",K(Pi) =tlp X+ Xlp;.

Since J has good reduction outside p and A has degree p, we can regard Sy: as
a subgroup of H'(K(p)/K, J[\']), where K(p)/K is the maximal extension
of K unramified outside p. As explained in Section 7 of [McC88], we can also
regard Sy as a subgroup of U* for ¢ < 3, where U is as defined in (1.3). For
a,b € K, denote by (a,b) the Hilbert symbol.
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Proposition 2.1 Let a € Sy2, b € S5, ay, = 0(zy), Ty € J(Ky). Then
P02 = (1py (), buy)-

Proof This follows from [McC88, Theorem 2.6], with ¢ = A2 and ¢ = . O

For a number field F' we denote by O’ the ring of p-integers in F. Suppose
F C K(p) and let C be the ideal class group of O%. Since the group O/I?(p) is
p-divisible, we have an exact sequence

p
0= pp — Olf?(p) — OII?(I?) — 0,
which induces a long exact sequence of Galois cohomology

e BV K(p)/F,0F,) 2 BV K (p)/F,0%,) —
H(K (p)/F. i) — HU(K(p)/F,O5,)) 2 HI(K(p)/F.O,) — -

If i = 1 then, since H'(K(p)/F, Ol}?@)) is isomorphic to C, we obtain the
exact sequence

0 — OF /OR" — HY(K(p)/F, 1) — Clp] — 0. (2.4)

Also, by [NSW00, VIIL3], it follows that H2(K (p)/F, Oy, )[p™] can be iden-
tified with the subgroup Br(K (p)|F)[p*>] of Br(F)[p>]. Setting i = 2 in the
above long exact cohomology sequence gives another exact sequence

0 — C/pC — H*(K(p)/F, np) — Br(K(p)/F)[p] — 0. (2.5)

Lemma 2.2 Fvery element of HY(K(p)/K, J|\¥]) lifts to HY(K, J[A\1]).
Moreover, if p is regular, it lifts to H' (K (p)/K, J[\*+1]).

Proof Let a € H'(K(p)/K, J[A\*]), and let da € H?(K(p)/K, J[\]) be the

coboundary of a for the sequence
0 — J[A] — JAF) — J[M] — 0. (2.6)

Then the inflation of da in H*(K, J[\]) ~ H?*(K,u,) = Br(K)[p] has zero
invariant at every place not dividing p. Thus it is zero by the Brauer—Hasse—
Noether theorem (since there is only one place of K dividing p). For the
second statement, we argue in the same way, using (2.5). O

We recall the definition of ( , );. Let a € Sys and b € S5. Lift a to an
element a; of H'(K, J[A\*]) (which is possible by Lemma 2.2). For each place
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v of K, lift a, to an element a,; that is in the image of 6. Then a;, — a,, is
the image of an element ¢, € H'(K,, J[)\]), and

(a,b) :chubv

where the cup product is with respect to the local pairing
HY(K,,J[\) x H'(K,, J[\]) — Q/Z.

If p is regular, L/ K is totally ramified at w, and there is a unique extension
of w to L, that we also denote by w. Let N =S¥~ ig".

=1

Proposition 2.3 Let a € Sys, b € Sy, ap = 0(xy), T € J(Ky). Suppose
that Na, regarded as an element of Ox/OF, can be written as Ny ke for
some € € Of. Then there exists a \-torsion point Py, and an element
cy € K, such that

Cp<a’b)3 = (Cwa bw)a

and the image of ¢, in L) /L3P satisfies
Co = Lp,(Tw) 'MN'e,

where n € HY (K (p)/L, )¢ In addition, if a and b are eigenvectors for the
action of A, we may assume that ¢, is also.

Proof Consider the sequence
0— JA — JAY — JN] =0 (2.7)

and the commutative diagram with exact rows

0 — HY(K(p)/L, JN)¢ — HY(K(p)/L,JN)C 25 HY(K(p)/L, JN)C

resL/KT resL/KT resL/KT

HY(K(p)/K,JN) — H'(K(p)/K.JN]) = H(K(p)/K, JN).
The top row is exact because (2.7) splits over L, and hence the sequence
0 — HY(K(p)/L, J[\]) = H'(K(p)/L, JI\"]) — H'(K(p)/L, J[N°])

is exact. By Lemma 2.2, a lifts to an element a; € H'(K(p)/K, J[\Y]). Let
a) € H'(K(p)/L, J[A\"])“ be any lift of res;x a (resx a; itself is one such).
Then

resp ka1 = ajn and € H'(K(p)/L, uy)°. (2.8)
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We now construct a candidate for a}. Under the identification (2.3) between
J[N'] and g, the map X~' : J[X'] — J[A] corresponds to projection on the
first component. Hence under the identification H'(K, J[\3]) = (K*/K*?)3,
a corresponds to an element (xy, 7y, x3) € (K*/K*?)3 and A2a = x;. More-
over, in the identification

HY (L, J[AY) = (L* /L"),
the action of ¢ on H'(L, J[\Y]) is intertwined with
(t1,to, b, ta) — (17,83,3,t5t7), t; € L™/L*P.
Thus (t;) is fixed by G if
t7=t;, i=1,2,3, and tJ'=1t;".
By hypothesis, 21 = Np/ke€, € € OF. Then
a) = (x1, 9,23, N'€) (2.9)

is an equivariant lift of (xq, x, x3).
Now let a,,1 be the local lift of a given by a,1 = d4(z,,). Then

resr, /K, Qw1 = (9617127$3, LP4($w))- (2-10)

Thus, from equations (2.8), (2.9), and (2.10), we get

T€S, /Ky (Cw) = T€SL, /i, (1w — Guw1) = Lp, (azw)_lnN’e.

The last statement of the proposition is clear, since at each stage in the
calculation we can choose eigenvectors, and the maps A and ¢p, are also
eigenvectors for the action of A, by the choices we have made of A and P,. [

3 The local approximation

Let P; be as in the previous section, ¢ = 1,2, 3,4, let D; be a divisor on Fyy .
representing P;, and let f; be a function whose divisor is pD;. Take D; and f;
to be defined over K = Q(() if i = 1,2,3 and over L = K(n;/f;) if i = 4. The
maps tp, in Propositions 2.1 and 2.3 are computed by evaluating f; on certain
divisors. We use the approximation technique in [McC88] to find expansions
for f; on p-adic discs in F, ;.. Given a function f whose divisor is divisible
by p we approximate f on an affinoid Y in Fj ;. using the fact that

% =w (mody p). (3.1)
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for some holomorphic differential w on F, ;. ([McC88], Theorem 5.2). For
general facts about rigid analysis, we refer the reader to [BGR84].

We recall the notion of congruence used in (3.1). If Y is a one-dimensional
affinoid defined over an extension F' of Q, with uniformizer mp, we let A(Y")
be the ring of rigid analytic functions on Y, M (Y') the quotient field of A(Y),
and D(Y) the module of Kahler differentials of M(Y'). We define sub-Op-

modules

AY) = {feAY):|f(x)] <1forallz € Y(C,)}
MUY) = {flg: [ € A%(Y),g € A(Y) \ 7pA°(Y)}
DY) = {Z fidgi - fi,9: € M°(Y)}.

If f,g e A(Y), c € F, we say that f = g (mody ¢) if (f —g) € cA°(Y), and
similarly we define the notion of congruence on Y in M(Y) and D(Y). In
order to deduce from (3.1) information about power series expansions of f on
closed discs in Y, we need the following lemmas.

Lemma 3.1 Suppose that Y is a one-dimensional affinoid over a finite ex-
tension F' of Q,, Y has good reduction, and Z is an affinoid contained in
Y, isomorphic to a closed disc. If w € D°(Y) is a differential with at worst
simple poles on'Y that is reqular on Z, then w € D°(Z).

Proof Since Z is isomorphic to a closed disc, it is contained in a residue
class U of Y (or is equal to Y, in which case there is nothing to prove).
It is clear from the definitions that D°(Y)|y = D°(U), hence w € D°(U).
Furthermore, since Y has good reduction, U is isomorphic to an open disc.
Choose a parameter ¢ for U such that Z is the disc |t| < |¢| < 1 for some
c € I, and write

w=gdi+y fb dt, g€ Op[l]], aibi€Or |d<|b<L.
i=1 v

Expanding the polar terms in powers of ¢/b; and setting ¢t = cs, we get
w = fds for some f € Op[[s]]. Since s is a parameter on Z, this proves the
lemma. [J

Lemma 3.2 Suppose that f is a function whose divisor is divisible by p. Let
Y be an affinoid with good reduction contained in Fop. and let Z be a p-
adic disc contained in Y such that there is a function on F,; . restricting
to a parameter on Z. If w satisfies the congruence (3.1) (mody p), then it
satisfies the same congruence (mody p).
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Proof With notation as in [McC88], we have

d
7f =w+pn, neD(Y).
Let g be a function on F,; . such that f/g¢? is regular on Z (we can construct
g using a parameter on Z as in the hypotheses). Since a suitable scalar
multiple of ¢ is in M°(Y), dlogg € D°(Y'). Thus  — dlogg € D°(Y) and is
also regular on Z, and hence is in D(Z) by Lemma 3.1. Thus
af _df  dg dg
— ——p—:w+p<n——)zw modz p). U
ff g g ( )

We apply these considerations to the affinoid Y introduced in [McC88]
and defined as follows. Choose mg = 7 as the uniformizer for K,. Let s and
t be the functions on Fy . defined by

r = —%(1 + P D/2g) (3.2)
y = (=1)%ab’c(1 + 7t). (3.3)
Let Y be the affinoid defined over L,, by the inequalities
1<l Jsl < 1.

A basis of holomorphic differentials on F . is

kb

51— o5
Yk
for some constants Ej, and where H, . is a certain subset of {1,2,...,p—1}

of cardinality (p — 1)/2 (we can identify H,;. with the CM-type of F,.).
We can and do choose the constants E}, so that wy has expansion

xT
wk:Ek

dx, k’ € Ha,b,m

wr =ds  (mody 7p), (3.4)

(note that this normalization is different from that of [McC88]). Now P is the
A-torsion point represented by the divisor (0,0) — oo, and we choose f; = x.
In [McC88] it was shown that

d,
dh = g(P=1)/2 Z brwr  (mody p) (3.5)
h kEHqg b.c

for some p-adic integers by, satisfying

- |F i=0
> bk = { , (mod 7g), F €Z/pZ*. (3.6)
R 0 1<i<(p—3)/2
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Note that although it was assumed that Fj ;. is wild split in Section 5 of
[McC88], there is nothing in the definition of Y or the calculation show-
ing (3.5) and (3.6) that uses this assumption. It is only at the end of that
section that the assumption comes in.

Lemma 3.3 If

Z Upwy = Z vy (mody wHE=3)/2)

keHﬂ,,b,c keHa,bvc

then
up, =vr  (mod "), k€ Hypp.

Proof See pages 658-659 of [McC88]. [

Proposition 3.4 We have

d
ﬁ = Z crwr (mody p), ¢ =0 (mod 7r(p_5)/2)
13 kEHq .
and
d b
ﬁ = Z drwy (mody p), di = —ge-D/22k (mod 7®=2/2) " (3.7)

Jfa k3
keHa,b,c

where the by are as in equation (3.5).

Proof We have if if
)\3—3 = =1 (mod .
g = gy modvp)
Since C.wi = (Fwy,, we have \wy, = A\wy,, for some o € Gal(K,,/Q,). Hence
it follows from Lemma 3.3 and (3.5) that

A2 = 7P D/2p, (mod 7PHV/2),

Thus ¢, = 0 (mod 7®=9/2) as claimed. Similarly, we have A\2(dfy/f) =
(dfi/ f1), so X%d;, = 7®=V/2p; (mod #P*1/2). Furthermore, since (7 = (7%,
it follows from our choice of A that A7 /7 = —k (mod 7) for 1 <k <p—1,
so we get equation (3.7). O

Lemma 3.5

b
- Z k;_]; = F(q(a®’c?)® + abeB,_3) (mod 7),
kEH,Lb,c

where F' is as in (3.6).
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Proof Let n = (p—1)/2. Define

1 1 1
I T2 Tn
x? 3 xy
Ce(z1, ..., x,) = det ) .
x’f'_2 x§_2 x;}z
I A N U |

Then an elementary linear algebra calculation using (3.6) gives

by _ _
Z 5= FT3(H,,.)/To(H,,,) (mod ).

keHa,b,c
Let S;(x1,...,2,) be the ith symmetric function. Then
I3 = To(S} — 2515, + S3).

This can be proved by the usual method: the determinant vanishes if z; = z;
for i # 7, or if there is a polynomial of degree n + 2 vanishing on the x;, and
with no term of degree n —1, n, or n+ 1. Thus, if the roots of the polynomial
are ri,...,T,,a, 3, then

o+ ﬁ + Sl = 0,
Sy + (a4 B)S1 + af 0,
0455'1 + OéSQ + ﬁSQ + Sg 0.

Eliminating o and 3 gives the condition S} — 25,5, + S5 = 0. Now, we have

Sl(HOZiC) = —q(a"b’c°),
SQ(H(;;C) = 0,
B,_
Ss(Hyp) = ——22(a® +b° + ) = —abeB,_;. (3.10)

3

It is explained in [McC88], Lemma 5.24, how equation (3.8) follows from
[Van20, 17]; equation (3.9) follows from parity considerations; and equa-
tion (3.10) follows from [Van20, 16], in exactly the same way as (3.8) follows
from [Van20, 17]. O

We now define p-adic discs in Y, to which we apply Lemma 3.2. Let X be
the sub-affinoid of Y defined by [¢t| < 1 in the wild case and by |s| < |7k] in
the tame case. Let £, be the quadratic unramified extension of K,,. If F, ;.
is wild, X is isomorphic to a union of two closed discs, which are defined over
K, in the split case and over E,, in the nonsplit case. Furthermore, T' =1 is
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a parameter on each disc. If F, ;. is tame, then X is isomorphic to a union
of p closed discs defined over K, and T' = s/m is a parameter on each disk.
For proofs of these facts we refer the reader to[McC88] (where 7' = s’ in the
tame case). We denote by Z any of the discs that are components of X, with
parameter 7. We can write

fl|X = CZUZ<T)UZ(Tp)g7,(T)p7 L= 17 25 3a 47

where u; and v; are unit power series with constant term 1 and integer co-
efficients, u; has no terms in 7?7, and g; is a monic polynomial with integer
coefficients. Furthermore, these conditions uniquely determine the u;, v; and
gi- Then

— = — (modyz p). (3.11)

For a p-adic field H we denote by Ug/[[T]] the power series in Oy /[[T']] which
are congruent to 1 modulo the maximal ideal in Oy[[T]].

Theorem 3.6 Let Z be any of the discs that are components of X and let T
be a parameter on Z. Then

u; = 14+ 7PH2= D7 4 O(rPHO/2i), (3.12)

where |D;| < 1,14 =1,2,3,4. Moreover, |D,| = 1, and under the hypotheses
of Theorem 1.4, |D4| =1 and

D
=2 = (a0 + abcB,,_s.
D,
Finally, u; fori=1,2,3 are defined over E,,, and
uy € 1+ 702D, U ([T + 7222 P ED TU, [[T)),

where E € Z/pZ* is independent of the triple (a,b,c) and F, is the quadratic
unramified extension of Ly,.

Proof In both wild and tame cases we have wy, = 71D dT (mody 72) for
all k € Hup,., with D € Z/pZ* independent of k. This follows from our
normalization (3.4), since in the tame case we have

s=aT, (3.13)

and in the wild case it follows from [McC88, (5.6)], where it is shown that
the expansion of s in terms of ¢ on either of the discs in X is
—q(a®b®c®)2b 2b
§2 — q(a®b°c?) g

— %(tp — 1) + O(7?). (3.14)
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The statements about D; follow from (3.2), (3.13) (in the tame case) and
(3.14) (in the wild case), since f; = x. The statement about Dy was proved
in [McC88, Theorem 5.13]. Although this theorem is stated only for the wild
split case, the consequence (3.12) is easily seen to hold also in the other cases
(the part of Theorem 5.13 specific to the wild split case translates into the
statement |Dy| = 1 in the current notation, and we do not need it here).
The statements about D3 and D, follow from Proposition 3.4, Lemma 3.5,
and (3.11). The statement about the ratio D4/ D; follows from (3.5), the case
i =0 of (3.6), (3.7), and Lemma 3.5, taking note of the normalization (3.4)
and the fact that ds = unit x 7dT (mody 7?). The statements about the
fields of definition follow from the fact that f; is defined over K for¢=1,2,3
and fy is defined over L, and that the discs Z are always defined over E,,. The
final statement follows from considerations of ramification theory. Locally, we
have 7,_3 = 1+an?~* modulo pth powers, so the (upper) conductor of L,/ K,

is 3. Now, it follows from the properties of the P; that uj ' = u; modulo

Op, [[T))*PUg, [[TP]], and, since u; € 1+ x®PTV/2T D U, [[T]], this implies the
final statement with £ such that (0 — 1)7;* = B~ (mod 7;). O

4 Computation of the Cassels pairing
Recall the local descent maps
8= tp, X o X up o J(Ky) — (KX JKXP)

described in Section 2. We start by noting a couple of properties that follow
from the choice of P; made in Section 2. First, we have

tp,oAN=1tp_,, =234 (4.1)
Second, for 1 = 1, 2,3 we have, from eigenspace considerations,
Lp, (J(Ky) (k) Cc V(E—i+1). (4.2)

Let A C J(K,) be the subgroup generated by divisors supported on the discs
|T| < |mk|in X. Let

Vi.jl = € V(k).

i<k<j

Note that V(i) = 0 for i > p.

Proposition 4.1 We have

tp(A) CV[(p+5)/2—4d,p], i=123. (4.3)
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If Fyp.c s wild split, we have

vp(J(Ky)) CV[(p+1)/2—1d,p], i=1,23. (4.4)
If F,p.c is wild nonsplit or tame, we have

v (J(KW) CV[(p+3)/2—i,p], i=1,23. (4.5)

Furthermore, in the case i = 1, the inclusions in (4.3) and (4.5) are equalities.

Proof The inclusions in (4.3) follow immediately from Theorem 3.6, as does
the claim that the inclusion is equality in the case ¢ = 1. Now Faddeev [Fad61]
proved that

o — Vip—1)/2)® Vp+3)/2,p] if F,p.is wild split,
n Vilp+1)/2,p] otherwise.

This implies the statements (4.4) and (4.5) in the case i = 1, and also that
the image of A in J(K,,)/AJ(K,) has codimension 1, and the eigenvalue of
the quotient is k®~Y/2 in the wild split case and £®PT1/2 in the other cases.
The remaining statements now follow from (4.1), (4.2), and (4.3). O

Proposition 4.2 If F,; . is wild nonsplit or tame, then

Go(J(Kw)) = V[(p+1)/2,p]".

Proof From (4.1) with i = 2 we have
imd, N (K*/K*?) x1=imé x 1=V |[(p+1)/2,p] x 1 (4.6)

Furthermore, given u € V[(p+3)/2, p], we can find a € A such that ¢p, (a) = u,
and tp,(a) € V](p+1)/2,p] C imep,. Thus, modifying a by AJ(K,,), we can
choose it so that ¢p,(a) = 1. Hence

imd, D1 x V|[(p+3)/2,p]. (4.7)

Now it follows from local duality that im ¢, must be maximal isotropic with
respect to the cup product pairing on (K*/K*?)* = H'(K, J[X*]) induced by
the Weil pairing on J[\?]. Since A\ = A\?, the Weil pairing is skew symmetric.
Thus the pairing on (K*/K*P)? is a nonzero multiple of ((ay, by1), (az, b)) —
(a1,02)w (b1, as)y,", where ( , ), denotes the Hilbert symbol at w. The only

maximal isotropic subgroup satisfying (4.6) and (4.7) is the one given in the
statement of the proposition. [

Define a subspace Vgiopat C V' by

Velobal = @ V().

2<i<p—3
i even
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Proposition 4.3 Assume p > 11 and F,; . is wild nonsplit or tame. There
ezists a point x € A such that vp, (x) generates V((p+5)/2) and vp,(x) € Vgobal
foriv=2,3.

Proof It follows from Proposition 4.1 that A, regarded as a Z,[(]-submodule
of J(K,), has codimension at most 1. Hence d3(A) has codimension < 3 as a
[F,-vector space in d3(J(K,,)). By Proposition 4.1 we can choose x € A such
that ¢p, (z) generates V((p + 5)/2). This condition leaves freedom to modify
x by anything in AJ(K,), which would change d5(z) by anything in im d,.
Thus, modifying = as needed, we can ensure that ¢p, () € Vgobal, ¢ = 2, 3. The
number of degrees of freedom in performing this modification is equal to the
dimension of im da N Viiopal, Which is at least 4 if p > 11, by Proposition 4.2.
Thus we can ensure that x remains in A when making the modification. [

Computation of the Cassels pairing for Theorem 1.2 We now use
Proposition 2.1 to show that the pairing ( , )2 is trivial under the hypotheses
of Theorem 1.2. In the next section we explain how this implies the theorem.

Denote by ¢;: Sy — J(K,)/NJ(K,) the localization map. We claim
that, under the hypotheses of Theorem 1.2, tp, (¢1(Sy)) C V[(p + 3)/2,p] or
tp, (01(Sy)) C V((p+1)/2)@V[(p+5)/2,p]. Now, V(i) pairs nontrivially with
V(j) under the Hilbert pairing if and only if i + j = p (mod p — 1). Thus, it
follows from our claim and from (4.2) that ¢p, (¢53(J(K)) pairs trivially with
v (G(J(Kw))-

To see the claim, note that if hypothesis (a) of Theorem 1.2 is satis-
fied, namely that F,;. is wild split and p = 3 (mod 4), then, by [Fad61],
tp, (01(S)) cV((p—1)/2) & V|[(p+3)/2,p|. Furthermore, we can eliminate
V((p—1)/2) as a possibility, because ¢; factors through H*(K(p)/K, p1,) —
HY(Ky, p1p). Since (p — 1)/2 is odd, it follows from (2.4) that ¢; can have
nontrivial image in V((p — 1)/2) only if C((p — 1)/2) is nontrivial, which
would imply p | Bgyt1)/2. This never happens if p = 3 (mod 4).

If hypothesis (b) of Theorem 1.2 is satisfied, namely that F,; . is wild
nonsplit or tame and the image of U in either V((p + 1)/2) or V((p + 3)/2)
is trivial, then the claim follows immediately from (4.5).

The proof of Theorem 1.4 uses the following lemma.
Lemma 4.4 Suppose p > 5 is reqular, and let L be as in (2.2). Then
1. the map H'(K(p)/L, u,) — H'(Ly, j1,) is injective
X

2. the norm map Ny k: Of — Of is surjective

8. HY K (p)/L,1,)¢ (i) = 0 if i is odd and i # 1, orifi =p — 1.
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Proof Let Hy (resp. Hy) be the Hilbert class field of K (resp. L). Since
L/K is unramified outside p, and there is only prime of L above p, it follows
that Gal(Hy/L)/(c — 1) ~ Gal(Hg/K). Therefore p does not divide the
order of the class group Cy, ~ Gal(H/L). The injectivity statement follows,
since anything in the kernel would generate an unramified Kummer extension
of L of degree p. Furthermore, every unit of K is a local norm everywhere
except possibly at the prime above p, and therefore is a local norm there also
by the product formula. Thus it is a global norm. The surjectivity of the
norm map follows by a standard argument using Gal(L/K) cohomology of
the sequences

1-0; -L*—-P,—1 and 1— P, —1I, —C[—1,

where I and Pp are the groups of ideals and principal ideals respectively.
Finally, by (2.4),

HY(K(p)/K, ) = OF JOZP and H'(K(p)/L,p,) = O JO[P.

Moreover, the cokernel of OF%/OxF in (OF/OF)¢ is HX(L/K, p,) ~ Z/pZ,
with Gal(K/Q) acting via kP2, since it acts on G via k3. Since p — 3 is even
and (O /OF)(i) = 0if i is odd and i # 1, or if i = p—1, the third statement
of the lemma follows. [

Proof of Theorem 1.4 We exhibit a € Sys and b € S) which pair non-
trivially under the Cassels pairing.

Since p is regular, the exact sequence [McC88, 7.3] identifies U with
0% /OF. Thus Sy C (0OF/OF) for i < 3. The Selmer group is the sub-
group obtained by imposing the local conditions at w. Since (p+1)/2 is even,
we can choose an element b € O} /OF which generates V((p + 1)/2), and b
satisfies the local condition by Proposition 4.1, so b € S).

As for a, by Proposition 4.3 there exists a, = (aw1, w2, Gw3) = 03(x),
x € A, such that a,; generates V((p + 5)/2) and ay2, w3 € Vgiobal. Using
a suitable projector, we may further assume that x is an eigenvector for
the action of A. Choose eigenvectors a; € Oy / (’)[X(p specializing to a,,; for
i =1,2,3 and define a € Sys by a = (a1, as, az).

Now, by Lemma 4.4, \2a = a; € V((p+5)/2) is the norm of a global unit
e in OF, and by Proposition 2.3, the Cassels pairing of a and b is the Hilbert
pairing (¢, by), where ¢,, € K*/K*? is an eigenvector and

co = tp, () 'pN'e in LS/LXP, (4.8)

where n € HY (K (p)/L, j1,)¢. We can identify the precise eigenspace in which
¢y lies as follows. Since a,1 = tp(x), and since P; is fixed by A, z has
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eigenvalue £P)/2. Then, since A has eigenvalue x (modulo \°), it follows
that d3(z), and hence c,,, have eigenvalue £®+%)/2=3 = (»=1/2 Thus we may
assume without loss of generality that ¢, 7, N'¢, and ¢p,(z) are eigenvectors
for a lift A of A = Cal(K,/Q,) to Gal(L,/Q,), with eigenvalue x®~1/2.
Since n € H'(K(p)/L, j1,)¢, its projection onto an eigenspace (L) /LXP)(i)
with ¢ > 1 odd is trivial, by Lemma 4.4. This applies in particular to i =
(p —1)/2, so that the image of n in L) /LXP is trivial.

Under the Hilbert pairing the x®~1/2 and £(P+1)/2 eigenspaces of K /KXP
pair nontrivially. Thus, to prove that the pairing (c,,b,) is nontrivial, it
suffices to show that ¢, is not a pth power, and for that it suffices to show
that its image in L) /LxP is nontrivial.

Since x € A, we may choose a divisor D supported on |T'| < || such that
ayw; = fi(D), 1 < i <3. Since D is supported on |T'| < |x|, we have

u= fy(D) =uq(D) (mod L;P(1+7"Or,)).
From the Galois properties of the P;, we have

we (Ly/L")((p—1)/2)), (0 —-Du=wv, (4.9)

where v is the image in L) /L}P of a generator of V' ((p+5)/2). Since p > 19,
(p+5)/2 is less than p — 3, and thus v # 0. Thus the subspace of L /LXP
satisfying the conditions (4.9) is two-dimensional, with generators u; and
ug, where u; is the image of a generator of V((p — 1)/2) with expansion
up =1+ 7r(p vz O( p+1)/2) and us € (L)/LxP)((p—1)/2) has expansion

=1+ 7T(p+5)/2 24O (p+5) /2). Thus v = u®u) for some «, § € Z/pZ.
Expandmg the blnomlal series, we get

u=1+ om;f_l)ﬂ + 57T(p+5)/2 0. (4.10)

We can now use Theorem 3.6 to evaluate uy at D. Comparing appropriate
coefficients (note that D is supported on |T| < |x]), we see that

« D4 1

1
- ED, _Beh9= 5 (a(a"V'e") + abeB, ). (4.11)

Now, we may replace (a,b,c) by any (a/,0, ) = (ta,tb,tc) (mod p), for t €
[F . Tt is easily seen, using the property q(zy) = q(z)+q(y), that v(ta, tb, tc) =
t3y(a, b, c). Thus, from (4.11), we see that by varying ¢ appropriately we may
ensure that u, and hence ¢, varies in L) /LXP  and, in particular, takes on
nonzero values. Hence there exists a choice of ¢ such that the pairing is
nontrivial for the curve Fy y ~. However, this curve is isomorphic to Fy .,
and hence the pairing must be nontrivial in that case as well. [J
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5 Shafarevich—Tate groups

The proofs of Theorem 1.2 and Theorem 1.5 follow from the computations of
the Cassels—Tate pairing by means of the following proposition.

Proposition 5.1 For all positive integers m and n, the restriction of the
Cassels—Tate pairing induces a perfect pairing

(i) ) (T TN ) ) — Q/2.

Let ITl4;, denote the maximal divisible subgroup of III, i.e. x € Ilg;, if
and only if for every nonzero integer n there exists y € III such that x = ny.
Let III,¢q denote the quotient group III/III4;,. Note that:

Lemma 5.2 g, s a divisible group in the usual sense that multiplication
by any nonzero n € Z is surjective on it.

Proof The argument is standard: since III[m] is finite for all nonzero m € Z,
the groups NII[Nm|, N > 0, stabilize for sufficiently large N. Thus for
every m there is an integer N(m) such that if an element of ITI[m] is divisible
by N(m) it is infinitely divisible. Now if z € Illgy,[m] and n > 0, choose
y € HI[N(nm)nm] such that N(nm)ny = z. Then ¢y = N(nm)y is in
gy [nm] and ny’ = z. O

Note that since ( is an automorphism of I1I it preserves I1ly;,, and hence so
does Z[¢]. Furthermore, since \~! is a unit times p in Z[¢], Iy, is divisible
by A" for any positive n.

Lemma 5.3 The exact sequence
0 — Mgy — I — Mlyeq — 0
induces by restriction an exact sequence
0 — Mgy "] — T[] — Mea[A"] — 0

for any positive integer n.

Proof Only the surjectivity is in question. Let z € IIq[A"]. Lift x to
y € III. Then \"y = z € Illg;,. By Lemma 5.2, we can find w € Iy, such
that \"w = z = A"y. But then y — w € III[A\"] and y — w reduces to x in
.4 O

It is well known that III,.q[p>] is a finite group and that the Cassels-Tate
pairing induces a perfect pairing

[]: Myea[p™] X Mleq[p™] — Q/Z.

We now have the following lemma:
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Lemma 5.4 The annihilator of Weq[A™] with respect to the latter pairing
equals X" ,eq[p™], for all positive integers m.

Proof 1t is clear from the definition of the pairing given in [McC88], for
example, and from the functoriality properties of the Weil pairing, that
[Ca,d’] = [a, ¢ /). Hence, if A = (7' — 1, then A™IIlq[p™] annihilates
IIL,eq[A™]. Since A/A is a unit in Z[¢], we have A™I,eq[p™] = A ILeq[p™).
So the kernel H on the right factor of the restricted pairing

Miea[A™) X Mrealp™] — Q/Z

contains \"II1,q[p*>°]. Note that the kernel on the left factor of the latter
pairing is trivial. Therefore, the cardinalities of IIIq[\"] and IIL.q[p>]/H
are equal. But

[Mrea[p™]| = [Mea[A™]| A" Myea[p™]|,
hence H = AN™,q[p>=]. O
Lemma 5.5 For all positive integers m and n, the restriction of the Cassels—
Tate pairing induces a perfect pairing

(Tea A"/ A T3 ) 5 (Mg X/ A V7)) — Q/Z.

Proof By Lemma 5.4, the annihilator of Il,eq[A™] in Heq[A"] equals
)\mmred[poo] N ]-Hred[/\n] = )\mmredp\n—i—m]’

and the assertion follows. [

Proof of Proposition 5.1 By Lemma 5.5, it suffices to show that for all
m and n the groups III[A™]/(A"TH[A"T™]) and ITeq[A™]/ (A", eq[N"T]) are
isomorphic. By Lemma 5.3, we have a commutative diagram

0 — Mg [\ — TI[A™™] — ILeg[A"™] — 0
Ja=an [B=an |7 =
0 — Hlgiv[A™] — I[N\ — M eq[A™] — 0

where the horizontal sequences are exact. By the Snake Lemma, we get an
exact sequence

0 — Ker(a) — Ker(3) — Ker(y) —
— Coker(a) — Coker(3) — Coker(v) — 0.

By Lemma 5.2, we have Coker(a) = 0, hence Coker(y) is isomorphic to
Coker(3), and this completes the proof. [
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Proof of Theorem 1.2 By the structure theorem for torsion modules over
Dedekind domains we have a Z[¢]-module decomposition

LI =~ (Z[C/ (W)™ & (Z[c]/(\)"> & (ZIC]/(X)",

where t1, t5 and t3 are nonnegative integers. The computations in the previ-
ous section show that the pairing (obtained by restricting the Cassels—Tate

pairing)
M\ x I\ — Q/Z

is trivial. By Proposition 5.1 (for m = 2 and n = 1), we get that the groups
ITI[A?)/(AIII[N3]) and III[A]/(A2III[A%]) are both trivial. But then

(Z[C/ (M) & (Z[¢]/ (X)) @ (Z[¢]/(N)™ ~ TI[A] = NII[N] =~ (Z[¢]/A)"

so t; = to = 0, which proves the claim. [

Proof of Theorem 1.5 Let
Y =~ (Z[C]/ (V) @ (Z[C)/(A%)" @ (Z[C)/(A)° & (Z[C]/(A)?.

If we show that d = 0, then A\* annihilates IIT[A\?], therefore TII[A*] = TIT[A\3].
By induction, this implies HI[p>] = II[A\*°] = II[A*]. So assume d > 1.
Since the Cassels—Tate pairing on IIT[\?] x IIT[)] is nontrivial, Proposition 5.1
implies that III[A\*]/(AILI[A*]) has dimension > 2 over F,. Now

ALY ~ (Z[C)/ (V)" & (ZIC)/ (W) & (ZIC)/(A))“.

Counting F,-dimensions, we get 6 — (b+2c+3d) > 2, therefore b+2c+3d < 4.
This implies d = 1 and ¢ = 0. Therefore,

I ~ (Z[C)/(N)* & (Z[]/(3)" & (Z[c]/(\h).

This implies that

a contradiction. O

6 Tame reduction

Although it is not strictly necessary for Theorem 1.6, we take the opportunity
to prove a general lemma on tame reduction, since it clears up some confusion
in the literature. In [Lim95], an attempt was made to improve the result of
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[McC88] on the existence of nontrivial elements in ITI[\] in the wild split case,
under the additional hypothesis that the Jacobian of the Fermat curve in ques-
tion is nonsimple. However, as Lemma 6.1 shows, nonsimple Jacobian and
wild split reduction over Z,[(] are incompatible properties, so the Mordell-
Weil rank estimates given in the last section of [Lim95] are incorrect. As far
as we can tell, the problem lies in the use of the function ¢(x) which com-
putes the reduction type (see the introduction). Here as well as in [McC88],
q is evaluated on triples (a, b, ¢) of integers such that 0 < a,b,a + b < p and
a+b+c=0. In [Lim95] however, ¢ is evaluated on triples (a, b, ¢) such that
0<a,ba+b<panda+b+c=p. While it does not make any difference
which of the two types of triples one chooses to define the curve F ., it does
make a difference which type of triple one uses to evaluate ¢ and hence the
reduction type. We have the following lemma:

Lemma 6.1 Let (a,b,c) be such that Jop . is nonsimple. Then F, . has tame
reduction over Z,|C].

Proof By [KR78], J,p. is nonsimple if and only if p =1 (mod 3) and F,
is isomorphic to Fy,._(11), where r?4+r+1 = 0 in F,,. By definition of ¢(x), it
therefore suffices to show that (r + 1) *)®=1) — =) = (mod p?). Since
6 divides p — 1, it suffices to show that

(r+ 1)) — 4" =0 (mod p?).

Let k be an integer such that r*> + r +1 = pk. Then (r + 1)®> = pk + r.
Therefore,
(r+1)°%=(pk+7)>=r>+3r*pk (mod p?).

Hence (r + 1)0+Y = (3 4 3r2pk)™*! = (130D 4 3r2pk(r 4+ 1)7%") (mod p?).
Now note that 73"r?(r + 1) = —r (mod p) since r is a cube root of unity
modulo p, so that 3r2pk(r + 1)r*" = —3rpk (mod p?). Hence, (r + 1)50+) =
(r373 — 3rpk) (mod p?). Therefore,

(r + 1)00FD) 0 = (937 (3 — 37y — 3ppk)  (mod p?).

Since r® = pk(r—1)+1, we get r*" = (rpk(r —1)+1) (mod p?), so r3 —r3" =
—pk(r — 1)? (mod p?). Hence,

(r+ 1)6(T+1) — = —pk:(rg”(r — 1)2 +3r) (mod p2).

Since 73" (r — 1) 4+ 3r = 0 (mod p), this proves the proposition. [

Remark A less computational proof of Lemma 6.1 was suggested to us by
Dino Lorenzini. The argument goes as follows: To show that the reduction is
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tame, it suffices, by work of McCallum, to show that the degree of the mini-
mum extension M /K" such that J, ;. has good reduction over M is prime
to p. It is known that this minimum degree is at most 2g + 1. Now suppose
Ja b 1S isogenous to the product of two abelian varieties of smaller dimension.
Then M is the compositum of the corresponding minimum extensions for the
factors. Each of the latter extensions has degree strictly less than p, so the
degree of their compositum is prime to p.

Proof of Theorem 1.6 By Lemma 6.1, the reduction is tame in this case.
By Theorem 1.4 and Proposition 5.1, the F,-dimension of III[A]/(A3ILI[A\%])
is > 2. In particular, the F,-dimension of III[A] is > 2. Since p is regular, the
results of Faddeev ([Fad61]) show that the Selmer group S, is 3-dimensional
over F,. On the other hand, Gross and Rohrlich ([GR78]) have shown that the
Mordell-Weil rank of J7; _g over Q is nonzero. Therefore, the rank equals 1
and III[\] is 2-dimensional over F,. By Theorem 1.2 it follows that III[\?] has
rank 2 over Z[(]/(A\*). Theorem 1.5 then implies that III[p>] ~ (Z[¢]/(\?))%.
The statement about quadratic points on F7; _g and on the Fermat curve
XY 4y 4 719 = 0 follows immediately from Corollary 2.2 and Theorem 1.3
of [Tze02]. O
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Once upon a time, there was a surface F' = F5, known to all as the cone
over the twisted cubic, or as P(1,1,3) = Proj k[uy, us, v], where wtuy, uy =
1, wtv = 3. The anticanonical class of F'is —Kp = Of,(5), so that its
anticanonical ring R(F,—KF) is the fifth Veronese embedding or truncation

Cascades of projections from
log del Pezzo surtaces

Miles Reid Kaori Suzuki

To Peter Swinnerton-Dyer, in admiration

Abstract

One of the best-loved tales in algebraic geometry is the saga of the
blowup of P? in d < 8 general points and its anticanonical embedding.
If a del Pezzo surface F' with log terminal singularities has a large
anticanonical system |—Kp|, it can likewise be blown up many times
to produce cascades of del Pezzo surfaces; as in the ancient fable, a
blowup can be viewed as a projection from a bigger weighted projective
space to a smaller one, leading in nice cases to weighted hypersurfaces
or other low codimension Gorenstein constructions. The simplest ex-
amples already give several beautiful cascades, that we exploit as test
cases for practice in the study of various kinds of projections and un-
projections. We believe that these calculations will eventually have
more serious applications to Fano 3-folds of Fano index > 2, involving
1001 lovely and exotic adventures.

The story of Fy

E[uy, us, v]®. We see that this ring is generated by

T1,...,x9 = S°(uy,us), S*(ug,us)v in degree 1,
Y, Y = uv>, ugt® in degree 2,
z = 0 in degree 3,
: d _ fd d—1 d
where, as usual, we write S%(uy,ug) = {uf,u{ ua,...,us} for the set of

monomials of degree d in uy, us.

227



228 Cascades of projections from log del Pezzo surfaces

Note that the two generators yq,y, in degree 2 are essential as orbifold
coordinates or orbinates at the singular point. This point is simple and well
known, but we spell it out, as it is essential for the enjoyment of our narrative:
at P =P, =(0,0,1) € P(1,1,3), only v # 0. We take a cube root £ = /v,
thus introducing a Z/3 Galois extension of the homogeneous coordinate ring.
The homogeneous ratios u; /€, uy /€ are coordinates on a copy of C?, which is
a Z/3 cover of an affine neighbourhood of P; hence P is a quotient singularity
of type %(1, 1). In our truncated subring R(F,—Kp), only z # 0 at P, and
the same orbinates are provided by the homogeneous ratios y;/2%/3, y,/2%/3.
In the projective embedding given by R(F,—KF), since the orbinates are
naturally forms of degree 2, we think of P as a quotient singularity of type
5(2,2).

There are many ways of seeing that the Hilbert function of R(F, —KF) is
given by

25 1 L ifn=1mod3
Py — W(F.—nKp) =14 2 <n+ >_ 3 ifn=1mo
3 2 0 otherwise

for all n > 0, and thus the Hilbert series is

w1 TEH92 T 1!
NS
(1—1)2(1— %)

You can do this as an exercise in orbifold RR ([YPG], Chapter I1I); or another
way is to multiply the Hilbert series 1/(1 — s)?(1 — s3) of k[uy, us, v] through
by (1 — s°)2(1 — s'%), truncate it to the polynomial consisting only of terms
of degree divisible by 5, and substitute s° = t.

Now let S = S — F be the blowup of F in d general points P;, for d < 8.
Write E; for the —1-curves over P;. Since Kg = Kr+ ), E;, the anticanonical
ring R(S, —Kj) consists of elements of R(F, —K) of degree n passing n times
through P;. Thus each point imposes one condition in degree 1, 3 in degree 2,
etc. Therefore the Hilbert series of S is

t 14+ T=dt+ (- + (7 —d) +t*

Bty = Prlt) = dx 75 (=021 — )

In particular S has anticanonical degree 2253¢ = (8 —d)+ 1. The first cases
are listed in Table 1.1; the first three models suggested by the Hllbert function
work without trouble. For S the Hilbert function requires 3 generators in
degree 1, 2 in degree 2, and 1 in degree 3, and the corresponding Hilbert
numerator is

(1—1)3(1 —t3)%(1 — ) Ps(t) = 1 — 2t3 — 3t* 4+ 3¢5 + 2t — #°,
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d=811/3 | Ps(t) = goima=m | S C P(1,2,3,5)
d="714/3 | Ps(t) = 7224t Sp4 CP(1,1,2,2,3)
d=6|7/3 | Ps(t) = 250 Spe C P(13,22,3)
d=1510/3 | Ps(t) = e codim 4
d=4[13/3 | Py(t) = HEFAHELLL | codim 5

Table 1.1: The cascade above S19 C P(1,2,3,5)

This indicates that S©® c P(1%,22,3) should be defined (in coordinates
X1, Ta, X3, Y1, Yo, 2) by the Pfaffians of a 5 x 5 skew matrix

Ty T2 by bis 11 2 2
©6)y _ T3 boy bos 1 2 2
A(S™) bai b of degrees 5 o (1.1)
z 3
We see that this works: thus the 3 Pfaffians involving z give ;2 = ---, so

that at the point P, = (0,...,0,1) the three x; are eliminated as implicit
functions, and P, is a (2,2) singularity with orbinates y1, .

Remark 1.1 For S® and S®, innocently putting in only the generators
required by the Hilbert series suggests the similar codimension 3 Pfaffian
models of Table 1.2. However, experience says that they cannot possibly

d=5 | SctEas | 5S¢ cP'23)

VR
—

o
NN
N——

(1=t)>(1—t%)

NNNN | NN

d =4 12— 48344444547 S IP’(15,3)

—
=
b

Table 1.2: Candidate Pfaffian models that don’t work

work: each of these is a mirage of a type encountered many times in the
course of previous adventures. For one thing, there is nowhere for a variable
of degree 3 to appear in the matrix, so that its Pfaffians define a weighted
projective cone with vertex (0,...,0,1) over a base C' C P(1%,2) (respectively,
C C P*) that is a projectively Gorenstein curve C' with K¢ = O(2); the cone
point is not log terminal. For another, the anticanonical ring needs two
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generators of degree 2 to provide orbinates at the singularity of type %(2, 2).
The conclusion is that we have not yet put in enough generators for the graded
ring (or, in other contexts, that the variety we seek does not exist). Mirages
of this type appear all over the study of graded rings, as discussed in 3.3.

As we see below, S@ is an explicit construction from F3, and has pro-
jections down to Sio C IP(1,2,3,5) or Syq C P(1,1,2,2,3), so that we can
find out anything we want to know about the rings R(S, —K) by working in
birational terms, either from above by projecting from Fs, or from below by
unprojecting from one of the low codimension cases. We first relate without
proof what happens. Listen and attend!

Consider S = S©®) first. First, R(S, —Kg) has two generators y,y» and
one relation in degree 2; the Hilbert series on its own cannot detect this,
because the relation masks the second generator. Once you know about
the additional generator, the anticanonical model of S® is a codimension 4
construction S® c P(1*%,22,3), with Hilbert numerator

(1 =21 =21 =t Ps(t) = 1 — t* — 4> + 8> — 47 — 13 + ¢'°;

however, there is still more masking going on: although the Hilbert series
only demands one relation in degree 2 and 4 in degree 3, there are in fact also
4 relations and 4 syzygies in degree 4, and the ring has the 9 x 16 minimal
resolution

Og «— Op «— Op(—2) 40(-3) & 410(—4)
— 40p(—4) & 80(—5) 40(—6) «— ---(sym.) (1.2)

The syzygy matrixes in this complex have 4 x 4 blocks of zeros (of degree 0).
We represent this by writing out the Hilbert numerator as the expression

1 — 2 =483 — 4t 44t 80+ 415 —atS — 4" — 8 4410,

where the spacing is significant. Likewise, S is the codimension 5 construc-
tion S® c P(1°,22,3), with 14 x 35 resolution represented by

1 =32 —6t° —5t*  + 2%+ 12t* + 15° + 6°
—6t° — 155 — 12t — 2t° 4+ 5¢T +6t5+ 37 —t' (1.3)

These assertions can be justified either by viewing S@ as projected from
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F = T, or as unprojected from SV, For convenience, we do S® from

below, and S® from above (but we could do either case by the other method,
with slightly longer computations).

Projecting from a general P € S® blows P up to a —l-curve [ = P! con-
tained in the Pfaffian model of S© c P(13,22,3). Inversely, S® is obtained
as the Kustin—Miller unprojection of I C S® (see Papadakis and Reid [PR]):
the ring of S©®) is generated over that of S by adjoining 1 unprojection vari-
able z = x4 of degree kg — k; = —1 — (—2) = 1, with unprojection equations
x-g; = -, for the generators g; of I;. Now [ is clearly a complete intersection
of 4 hypersurfaces of degrees 1,2,2,3 (it is z3 =y = y2 = 2z = 0 up to a
coordinate change). The ring of S®) thus has equations the old equations of
SO of degrees 3,3,4, 4,4 (the Pfaffians (1.1) defining A(S®)), together with
4 unprojection equations of degrees 2, 3, 3,4. The numerical shape of the res-
olution (1.2) comes from this and Gorenstein symmetry. The same result can
be obtained by applying the Kustin—Miller construction directly: the projec-
tive resolution of the ring of S is the Buchsbaum-Eisenbud complex L, of
the matrix A(S®)), and that of [ is the Koszul complex M, of the regular
sequence defining . Then R(S®)) arises from a homomorphism L, — M,
extending the map Oge) — O;. For details, see Papadakis [P2].

We justify S® in the other direction, by projecting down from F. We
can choose coordinates to put a general set of 4 points in the form

{Pl,...,P4}CF:]P)(1,1,3) given by f4(U1,U2):U:0.

The anticanonical ring of the 4-point blowup S is then generated by

_ 2 .

T1y...,T5 = {u1f7 Ugf,S (Ul,UQ)'U} m degree ]-7
Yi,y2 = w0’ ugv’® in degree 2,

z = in degree 3.

The ideal of relations between these can be studied by explicit elimination
(we used computer algebra, but it is not at all essential); one finds that it is
generated by

* X1 T2 Yo

Ty T3 X
rank | 71 TP T <1, where vy = q(xs,x4,x5). (1.4)

To Tg Ts Y2

Yo Y1 Y2 <

Taking yo as a variable gives the second Veronese embedding of the one
point blowup of the 3-fold wps IP’(%, %, %, %) Thus S® is a hypersurface
of weighted degree 2 in this curious weighted quasihomogenous variety. The

second Veronese embedding of the one point blowup of P? is a well known
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codimension 5 del Pezzo variety appearing in other myths, and its equations
have a 14 x 35 resolution. We check that this agrees with (1.3).

Exercise 1.2 Chronicle the fate of F5 and its d-point blowup S@ — F; for
d <9. [Hint: the Hilbert series is

71+9t+9t2+11t3+9t4+9t5+t6_dx ¢
- (1—1t)%(1— 1) (1—1)?
1+ —dt+O—-d)t2+ (11 —=d)t?+ (9 —d)t* + (9 — d)t®> + t°

(1—2)2(1-1°)

P(t)

The singularity polarised by —K = A is of type £(3,3), so that S @) is in
P(1*4 3,3,5). Thus d = 9 gives Sg6 C P(1,1,3,3,5) and d = 8 gives a nice
Pfaffian in P(1,1,1, 3,3,5), with Hilbert numerator

1— 2t — 3% 4 37 + 267 — 13,

etc.]

These surfaces have a singularity of type %(3,3); we were disappointed
at first to observe that none of these is a hyperplane section S € |A| for
a Mori Fano 3-fold X of Fano index 2. For then X would have a quotient
singularity of type £(1,3,3), which is unfortunately not terminal. For further
disappointment, see 3.2.2.

2 The ingenious history of £(2,4)

Let T be a del Pezzo surface polarised by —Kr = Or(A) with a quotient
point P € T of type ;—)(2,4) as its only singularity. (Up to isomorphism,
P is the quotient singularity é(l, 2), but to give sections of —Kp weight 1,
and make Op(A) = — K7 the preferred generator of the local class group, we
twist ps by an automorphism so that dé Adn is in the € — ¢ character space,
and thus wt{ = 2, wtn = 4 mod 5.) By an exercise in the style of [YPG],

Chapter III, we see that

0 n=0 mod)H

2/5 n=1 mod5
n+1Y\

P.(T)=1+ 5 A=< 1/5 n=2 modb

2/5 n=3 modb

0 n=4 mod?H
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Trying n = 1 gives A? = 2/5 mod Z. Putting these values in a Hilbert series
as usual and setting A* = k + 2 gives

1 t 1 2t+t%+ 263
P(t) = 2. =
O=15ta-m? "5 ioe
1 t
= k
—i =P
1 2t(1 4+t + 243 +¢4) — (1 —¢)*(2t + 2 + 2t3)
5 (1—1)2(1 — )
1—t+t2 4+t —t>+ 10 t
= + k.
(1 —1)2(1 —t5) (1—1)3
The case k = 0 gives
1—t4+2+t" =0+ 1483+t 17
(1 —1)2(1 —t5) (1 =)(1—2)(1 —t5)

1—t%—t% ¢!
(=01 —2) 1 =) 1 -t (1 - 1)

that is, Tg s C P(1,2,3,4,5).

This surface turns out to be the bottom of a cascade of six projections,
whose head is the surface T = Ty C P(1,1,3,5) with —Kpr = A = O(4).
We guessed this as follows: by the standard dimension count for del Pezzo
surfaces, we expect T g to contain a finite number of —1-curves not passing
through the singularity. Contracting k disjoint —1-curves gives a surface
with K = A? = k + 2 and the above Hilbert series. For k = 6, we see that
A? =6+ 2 = 2 s divisible by 42, and we guess that A = 4B, leading to a
surface with the Hilbert series of T'= Ty C P(1,1,3,5). Hindsight is the only
justification for this guesswork. B

One sees that the minimal resolution 7" — T' is the scroll 3 blown up in
two points on a fibre, and that T is obtained from this by contracting the
chain of P's with self-intersection (—3, —2) coming from the negative section
and the birational transform of the fibre (see Figure 2.1).

-9 -3
Fy
B
F

Figure 2.1: Resolution of T =Ty C P(1,1,3,5)

We start by calculating the anticanonical ring of the head of the cascade,
T =Ts C P(1,1,3,5). Take coordinates uy, us, v, w in P(1,1,3,5), and take
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the defining equation of T" to be
ugw = fo(ur,v) = av? +bvud + cui = b (v, ui)la(v, ut); (2.1)

we could normalise the right-hand side to (v — u3)(v + u}). We use this rela-
tion to eliminate any monomial divisible by usw. Write B for the divisor class
corresponding to Op(1) or its restriction to 7. Since —Kr = 4B, the anti-
canonical embedding of T" is the 4th Veronese embedding of T C P(1,1, 3, 5);
one checks that the anticanonical ring is generated by

T, w7 = SYuy,ug), (g, uz)v  in degree 1,
Y1,Y2 = u‘;’w, VW in degree 2,
z = ww? in degree 3, (2.2)
t = ww? in degree 4,
v = w in degree 5,

and that its relations are given by the 2 x 2 minors of

Ty Tog Tz Ty Tg Y1 2 ¢
Tog X3 Ty T X7 A B C
nw A B C y z t u

, (2.3)

with
A = axg + bryze + el
B = axgxr7 + broxg + criT9,

C = ax% + bxsxg + cria3.

Theorem 2.1 Ford < 6, writeo: TY —-» T for the blowup of T in d general
points Py, ..., Py. (We elucidate what “general” means in (2.6) below.) Write
E; for the —1-curves over P; and A4 = g*A — > E; for the anticanonical
class of T'D. Then T'D is a log del Pezzo surface with only singularity of type
£(2,4) and (-Kg)? =6 —d + 2.

For d < 5, the anticanonical ring of T'YD needs 12 —d generators of degrees
179,22 3,4,5, and gives an embedding T'Y C P(1779,22,3,4,5) that takes the
E; to disjoint projectively normal lines

E, =P cTW cP(177% 2% 3,4,5).

The anticanonical ring of T needs 5 generators of degrees 1,2,3,4,5,
and embeds T®) as the complete intersection Tss C P(1,2,3,4,5), taking the
E; to disjoint —1-curves in Tgg (of course, the E; C P(1,2,3,4,5) cannot be
projectively normal).

Each inclusion R(T@, A@D) ¢ R(TW@D A=) for d < 5 is a Kustin-
Miller unprojection in the sense of [PR]. That is, it introduces precisely one

new generator of degree 1 with pole along F,;, subject only to linear relations.
For d = 6, see Remark 2.5.
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Proof Asin the analogous recitations for nonsingular del Pezzo surfaces, the
proof consists for the most part of restricting to the general curve C' € |A@),
The restriction R(T@, A®) — R(C, A¥) is a surjective ring homomorphism,
and is the quotient by the principal ideal (z¢), where z¢ is the equation of
C. Thus the hyperplane section principle applies, and we only have to prove
the appropriate generation results for R(C, A). In the antique tale, C is
a nonsingular elliptic curve, and we win because we know everything about
linear systems on it. In our case C' € |—Kpw| is an elephant, so is again
a projectively Gorenstein curve with Ko = 0, but it is an orbifold nodal
rational curve in a sense we are about to study. Our proof will then boil
down to a monomial calculation.

The general curve C' € |A| on T is irreducible and has an ordinary node
at P, and the two orbinates of P € T restrict to respective local analytic
coordinates on the two branches of the node. In other words, P € C is
locally analytically equivalent to the quotient <(§n =0) C (C2> / (?1)(2,4)),
where £, n are as in Remark 2.4. To make formal sense of this, we need to
work with the affine cone over T' D C' along the u-axis, and the C* action on
them. The cone over 7' is nonsingular along the u-axis outside the origin, with
transverse coordinates y, ¢ (see (2.8)) — the 1(2,4) singularity arises from the
Z]5 isotropy. The coefficient of zg in the equation (z¢) of C' is nonzero in
general, corresponding to ujv in (2.2). Therefore, along the u-axis, the cone
over (' is given locally by ot = higher order terms.

We choose a general curve C' € |A| and d < 6 general points Py, ..., Py
contained in C'. These points are also independent general points of T', be-
cause |A| is a 6-dimensional linear system on 7. This choice ensures the
existence of an irreducible curve C' € |A — > P;| with the local behaviour
at P just described. The birational transform of C' on T4 is an isomorphic
curve C € |A¥| that we continue to denote by C. It is irreducible, therefore
nef, and big since (A@)? > 0.

The normalisation n: C — C C T@ is a conventional orbifold curve: it
is a rational curve with two marked point P;, P5, the inverse image of the
node of C. In calculations, we take C' = P!, and P, = 0 and P, = co. It is
polarised by A = n*(A@) = 2P, + 1P, 4+ (5 — d)Q, where Q is some other
point. This is just a notational device to handle the sheaf of graded algebras

A=A with A =Omn ({%] P+ [% Pg) & Op1 (5 — d)i).

We calculate R(C, A) in monomial terms (the answer has a nice toric descrip-
tion, see Exercise 2.2).

For d = 5, the calculations is as follows: R(C,A) = R(P!, P +1P) is
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generated by

x in degree 1 with dive = %Pl + %Pg,

y1,y2 in degree 2 with div(yy,y2) = (2P1,2P2) + : P + 2P,
z in degree 3 with divz =3P, + 2P, + 2P, (2.4)
t in degree 4 with divt =5P, + 2P, + 1P,

uy, up in degree 5 with div(uy,us) = (7P, 7F).

Here, in each degree, |iD| is the fractional part {2} P, + {£}P, plus a lin-
ear system |Opi(k;)|, based by elements corresponding to the monomials
Ski(ty,t5), of which the middle ones are old, and some of the extreme ones
are new generators. Thus in degree 2, ky = 2, and the monomials vy, 22, >
correspond to 3, ¢ty t3.

Exercise 2.2 The generators of R(é , Zf) and the relations between them are
simply grasped by noting that wuq,¢, z, y1, z, Yo, uz in (2.4) satisfy
wmz =1ty =2 =y, g =at, au =y

this is the J ung-Hirzebruch presentation of the invariant ring of Z/(35) acting
on C? by 3=(1,12), where [2,2,2,4,3] = 225 The case d = 6 gives [2,2,4] =
170 . Generahslng this result to the general orbifold curve (P, a1 Py + aoPy) is
a little gem of a problem.

The extension of graded rings R(C, A®) c R(C, A) is a normalisation,
separating two transverse sheets along the u-axis. The affine cone over the
nonnormal curve C'is obtained by glueing the u; and us-axes together (differ-
ent choices of glueing differ by a factor in C*, and lead to isomorphic rings).
The functions compatible with this glueing are those that take the same value
on uy and ug-axes. Thus R(C,A@) ¢ R(C,A) is the subring generated as
above, but with only one generator u = u; — uy in degree 5 instead of two.
This proves the statement on generators of R(S@, A@) for d = 5. The cases
d < 4 are similar. B

In case d = 6, the orbifold divisor on C' = P! is

~ 3 4

An identical calculation shows that R(C, A) is generated by

in degree 2 with divy = %Pl + gPQ,
z in degree 3 with divz = %Pl + %Pz,
in degree 4 with divt = P; + %Pl + %Pg,
uy,us in degree 5 with div(uy, us) = (2P, 2P,).

(2.5)
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As before, the nonnormal subring R(C, A) is generated by ¥, z,t and u =
u1 — Ug, and one sees that the relations are

yt = 27, zu:tQ—yA‘.

That is, C' is the complete intersection Css C P(2,3,4,5), as required.

This proves the assertion of Theorem 2.1 on the generation of the rings
R(T@ AD). This proof uses that A@ is nef and big, but not that it is ample.

We now prove that A is ample. It is enough to show that the anticanon-
ical morphism of T(9) does not contract any curve I of T, or equivalently, that
T@ does not contain any curve with AT = 0. Now because the generators
of R(TW, A1) include elements 75, in (2.4) or y,t in (2.5) that give the
orbinates at P € A, the anticanonical morphism of 7'? is an isomorphism
near P, and so I' cannot pass through P. On the other hand, a curve with
AT = 0 is necessarily a component of a divisor in the mobile linear system
|AD]if d < 5, or |2A@] if d = 6.

One sees that T = Tz C P(1,1,3,5) has a free pencil |B| defined by
(uy : us), with a reducible fibre us = 0 that splits into two components F; :
(ug = I; = 0), where, as in (2.1), the equation of T' is usw = Iy (v, u3)ly(v, u?)
(compare Figure 2.1). Every effective Weil divisor is linearly equivalent to
a positive linear combination of Fy, F5. These satisfy Ff = Fj = —% and
FiFy = 2, so that iFy + jF is nef if only if 25 <4 < 2j. Moreover, iFy 4 jF,
can only move away from P if it is Cartier there, which happens if and only
if 5| (1 4+ j). Next iFy + jF» a component of |A| = |[4F) + 4F5| (resp. |2A])
implies 7,7 < 4 (resp. 7,5 < 8).

Thus for d < 5 we just have to handle I' € |2F} + 3F,| and [3F) + 2F3|.
Since —K7I' = 4 and (T')? = 2, RR gives h°(T,T) = 4, and for general points,
no 4 of Py, ..., P; are contained in I'. This completes the proof if d < 5. For
d = 6 we also need to consider

AFy +6F,, bHF) +5F, and TF) 4 8F;.

The proper transform of a curve I' C T will give AT = 0 if I € |A| passes
through the P; with multiplicity a;, where

ZCLZ' = —KTF, Zai = (F)2

In the 3 cases above, the only solutions are

' =4F, +6F,: —-KyI'=8, (I')?=8, none;
[ =5F +5F: —K; D=8 ([)?=10, (1,1,1,1,2,2);
[ =7F +8F: —K;D =12, (T)2=24, (2,2,2,2,2,2).
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The conclusion is that A@ is ample if and only

(0) the P; are distinct and contained in an irreducible curve C' € |A|;

(1) no 4 P, are contained in any I' € |2F) + 3F;| or |3F) + 2F,|;

(2) ‘5F1+5F2—Pl—PQ—Pg—P4—2P5—2P6|:@,

(3) |TFi+8F,—2> Bl =0and [8F, +TF, — 2> P = 0.

(2.6)

Here conditions (2-3) are only required if d = 6.

These are open conditions on Py, ..., P;, and they should fail in codi-
mension 1. It remains to check that they are satisfied for general P, ..., FPs.

Write C for the unique curve of |A| through Py, ..., Ps. Then any divisor I
on T in Case (2) contains C: indeed,

(5F1+5F, — Py — Py — Py — Py = 2P = 2F) |,
has degree 0, but is not linear equivalent to 0 on C' for general Pi,..., P
(recall that C' is a nodal cubic, so that its nonsingular points correspond to
different points of the algebraic group PicC' = C*). Thus I' = C' + B, where
|B| = |F\ + F3| is the pencil of T'. Clearly, the element of | B| through Ps does

not in general pass through Fs. The argument in Case (3) is similar: a divisor
" in Case (3) must be of the form C'+ D, where D € |[3F; +4F,— )" P;|. But

hO(T, 3Fy + 4F2) < hO(T, 4F) + 4F2) — hO(Tw7 _KT) —7

(see (2.2)) so that |3F) + 4F3| does not contain a curve through 6 general
points of 7. QED

Exercise 2.3 State and prove the analog of Theorem 2.1 for the cascade of
Section 1. In other words, prove that the d point blowup of F3 for d < 8 has
the properties asserted (without proof!) throughout Section 1.

Remark 2.4 The monomials in (2.2) map to some of the local generators of
the sheaf of algebras @, Or p(i) at the £(2,4) singularity. Indeed, write &, 7
for €2 and e* eigencoordinates on C?; then Oy is the sheaf of invariant func-
tions, locally generated by &°,&%n, &n?,n°, whereas the eigensheaves O p(7)
are modules over Op p, and are locally generated by

Orp(1) > &,6n,n*

Orp(2) > &7P

Orp(3) 3 &4, n? (2.7)
Orp(4) > &1

OT’p(5) > 1.



Miles Reid and Kaori Suzuki 239

Then the homogeneous to inhomogeneous correspondence at P (setting v/w =
1) has the effect

uy —n and v ¢,
so that the generators of R(T', —K7) map to local generators of Or p(i) by

deg 1: 2y =ul—n', zg=wvr—&n, O &

deg 2: y1 = ujw — 1, Yo = vw > &

deg 3: z=wulw? —n?,  xeyp = wviw — &, 0 &Y (2.8)

deg 4: t =ww®—n, y3=v*w*— £

deg 5: u=w!— 1.
The remaining generators in (2.7) are hit by monomials in these generators:
for example, £ € Or(1) is first hit by y5 in degree 6. Thus Or(i) is not
always generated by its H°, and not just because the H%(Ox (i)) are too small.
However, by ampleness, R(T,—K7) maps surjectively to local generators of
@?:0 Or(i), so that, for example, the orbinates £ and 1 must be hit by some
generators of R(T, —Kr).

Remark 2.5 (Detailed calculations of Type II projection) We hope
eventually to use the two cascades of surfaces treated in Sections 1 and 2 as
exercises in understanding Type II unprojection as in [Ki], Section 9, and in
particular, solve the unfinished calculation in loc. cit., 9.12. The unprojection
from Sy19 C P(1,2,3,5) to Sya C P(1,1,2,2,3) is covered by the equations
of [Ki], 9.8. The only little surprise here is that, instead of increasing the
codimension by 2, one of the entries in the 5 x 5 Pfaffian matrix is a unit,
and one of the equations masks the variable of degree 5 as a combination of
other variables.

On the other hand, the unprojection from Sgg C P(1,2,3,4,5) leads to
a codimension 4 ring, and the calculation is similar to the one unfinished
in [Ki], 9.12. The image I' of P! — P(1,2,3,4,5) cannot be projectively
normal; indeed, if vy, vy are coordinates on P! and z,y, 2,t, u coordinates on
P(1,2,3,4,5), the two rings have monomials

P(1,2,3,4,5) P!

in degree 1 =z V1, Vg
in degree 2 22,y V3, V109, V3
in degree 3 a3, xy, 2 V3 v, v1v3, V3

in degree 4z 2%y, y? x2,t S*(vy,v7)

and the restriction map from P(1,2,3,4,5) to I' clearly misses at least one
monomial in each degree 1,2,3. Choose Sgg containing I'. Unprojecting
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it adds one linear generator, and one generator in each degree 2, 3 and 4
corresponding to these missing monomials (this will be explained better in
[qG]). The old variables of degree 3 and 4 are masked by equations, and this
gives rise to a codimension 4 surface S" C P(1,1,2,2,3,4,5). We still do not
know how to complete this calculation directly.

Remark 2.6 In the projection from Fy of Section 1, we always assumed that
the blown up points were in general position. In the classic epic of del Pezzo
surfaces, there are lots of interesting degenerations, most simply if 3 points
in P? become collinear. The simplest way that blowups of F3 degenerate is
that two points come to lie on a fibre [ of the ruling of F5. If we project from
two points on [, the birational transform of the fibre [ becomes a —2-curve,
and contracting it together with the negative section of Fs gives a £(1,2)
singularity. Thus all the surfaces in Section 2 are degenerate projections
of those in Section 1. For example, Ty C P(1,1,3,5) is a projection of Fy
from 2 points in a fibre (see Figure 2.1). This gives a top down elimination
argument as on page 231 that might allows us to complete the tricky Type 2
unprojection calculation just discussed.

This type of contraction between surfaces with log terminal singularities
corresponds to the bad links of [CPR], 5.5. We do not make this too precise.
The fact that we blow up a point, then unexpectedly contract the line [ with
negative discrepancy is analogous to Sarkisov links involving an antiflip. The
regular kind of blowup of a nonsingular point in a del Pezzo cascade decreases
K2 by 1, and the Hilbert function Pg(t) by t/(1—1)3 = t+3t*+ 613+ 10t +- - - ;
whereas the special blowup (of a point contained in a curve of degree 2/3 that
is a component of a split fibre of the conic bundle structure) considered here
only decreases K2 by 14/15, and Ps(t) by

t(1 + 2t + 3t2 + 23 + 3t* + 2t° + 1)
(1—=t)(1—t3)(1 -1t
=t + 3t> + 66> + 9t* + 14¢° + 20t° + 26¢" + - - -

3 Final remarks

3.1 Why weighted projective varieties?

Nonsingular surfaces over a field & that are rational or ruled over k (that
is, have kK = —o0) are prominent objects of study in birational geometry
and in Diophantine geometry. By a theorem of Castelnuovo (a distinguished
precursor of Mori theory!), such a surface can be blown down (over k) to a
minimal surface, which is a del Pezzo surface of rank 1, or a conic bundle
over a curve with relative rank 1. In justifying the pre-eminent position of
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the cubic surfaces among del Pezzo surfaces, Peter Swinnerton-Dyer observes
that del Pezzo surfaces of degree > 4 are in most respects too simple to be
interesting, whereas del Pezzo surfaces of degree 2 and 1 tend to be much too
difficult. Whereas the cubic surface is associated with the root systems Fj,
those of degree 2 and 1, the weighted hypersurfaces Sy C P(13,2) and Sg C
P(1%,2, 3), are associated with F7; and Eg, and are much more complicated
from essentially every point of view (Galois theory, biregular and birational
geometry, Diophantine arithmetic, etc.). In Peter’s words:

“if your research adviser gives you a problem involving del Pezzo
surfaces of degree 2 and 1, it means he really hates you.”

In view of this, working with del Pezzo surfaces with cyclic singularities
may seem perverse, since it leads to even more exotic weighted projective
constructions. For example our model case is S19 C P(1,2,3,5), the 8 point
blowup of Fs. It makes sense to write down the equation of Siy over any
field, and to ask for its solutions: does this lead to any interesting problems
of birational geometry or Diophantine arithmetic? The Galois group of the
configuration of eight —1-curves is clearly the symmetric groups Ss. In con-
trast to the minimal cubic surface, this is birational over k in an obvious way
to the conic bundle F3 — P!, with the marked section, and a set of 8 points
defined over k. This suggests that our surfaces are actually simpler objects
and do not involve especially difficult or interesting Diophantine issues. On
a more positive note, log del Pezzo surfaces come in large infinite families,
among which we can surely always find some really complicated case for the
graduate student who deserves that special attention.

3.2 Log del Pezzo surfaces and Fano 3-folds of index 2
3.2.1 The fabulous half-elephant

Our main motivation was of course to use log del Pezzo surfaces to study Fano
3-folds of Fano index f = 2. The Fano index of a Fano 3-fold X in the Mori
category is the maximum natural number f such that —Kyx = fA with A a
Weil divisor of X. Our model is the general strategy of Altinok, Brown and
Reid [ABR], that uses K3 surfaces as technical background and motivation in
the study of Fano 3-folds of index 1. If X is a Fano with — Ky = 2A twice an
ample Weil divisor, a sufficiently good surface S € |A| is a del Pezzo surface
(if it exists, see below); an element of |— K x| is called an elephant, so S € |A]
is a half-elephant. In the two cascades of Sections 1 and 2, all the del Pezzo
surfaces up to codimension 3 extend in an unobstructed way to Fano 3-folds.
Thus for example, we have Fano 3-folds of index 2

X0 CP(1%,2,3,5), Xu4 CP(1%,223), and Xp; C P(1%,2%3)
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extending the del Pezzo surfaces of Table 1.1. What happens in cases of
codimension 4 is a computation based on the same projection cascade that
we have not had time to finish; the basic question is to find all Pfaffian
3-folds Xpy C P(1%,2% 3) containing a linearly embedded P? — P(1%, 2% 3).
It seems likely that the single unprojection type for del Pezzo surfaces from
codimension 3 to 4 splits into Tom and Jerry cases for Fano 3-folds that are
essentially different (compare [Ki], Example 6.4 and 6.8 and [P1]-[P2]).

On the other hand, the codimension 5 surface S® C P(1°,22,3) of (1.4)
probably does not have any extension in degree 1 to a Fano 3-fold of index 2:
we conjecture this because it seems hard to incorporate a new variable x4 of
degree 1 into the equations (1.4) in a nontrivial way to give a 3-fold having
only terminal singularities.

3.2.2 A good half-elephant is an extremely rare beast

In contradiction to our initial hopes, most Fano 3-folds X of index 2 do not
have a half-elephant, and most log del Pezzo surface S do not extend to a Fano
3-fold of index 2. An obvious necessary global condition is P, (X) > 1, but
there are also severe local restrictions on the basket of quotient singularities:
each quotient singularity %(1,@,7" — a) in the basket of X must have 2a =
+1 mod r (so that when we rewrite the singularity as %(2, 2a,17 — 2a), the
equation of S in degree 1 can be one of the orbinates). In slightly different
terms, as we saw in 1.2, a del Pezzo surface S with a singularity of type
%(a, b), polarised by —Kg = A, so that a + b = 1 mod r, can only extend to
a Fano 3-fold of index 2 if a4+ 1 or b+ 1 = 0 mod r (compare Example 1.2),
so that %(1, a,b) is terminal.

These conditions restricts the several thousand baskets for index 2 Fanos
to just a handful having a possible log del Pezzo surface as half-elephant.
Table 3.1 is a preliminary list of a few f = 2 Fano 3-folds without any projec-
tions from smooth points (not complete, but possibly fairly typical). Apart
from Nos. 1 and 2 that we already know from Sections 1-2, the only cases in
this list having a good half-elephant are No. 12, X012 C P(1,2,3,5,6,7) and
No. 14, X&lg C P(l, 2,3,4,5, 5)

3.2.3 Fano 3-folds of index 2 and projections

Quite independently of del Pezzo surfaces, Fano 3-folds of index 2 usually
have projections based on blowing up a nonsingular point, so often belong to
projection cascades. Suppose that X is a Fano 3-fold in the Mori category
(that is, with at worst terminal singularities) and —Kx = 2A with A a Weil
divisor. Consider the blowup ¢: X’ — X at a nonsingular point P € X
with exceptional surface £ = P2. Then by the adjunction formula for a
blowup, —Kx» = 2A’, where A’ = 0*A — E. If A> > 1and P € X is
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1. | X0 CP(1,1,2,3,5) 3(2,2,1)

2. | Xes CP(1,1,2,3,4,5) 1(1,2,4)

3. | X CP(1,2,2,5,7,9) | 5(2,2,7)

4. | Xioa CP(1,2,3,4,7,11) | £(2,4,7)

5. | Xg10 CP(1,2,2,3,5,7) | 5(2,2,1),3(2,2,5)

6. | Xoo CIP(1,2,3,7,11) 3(2,2,1),4(2,3,4)

7. | X002 CP(1,2,3,4,5,9) | 3(2,2,1),5(2,4,5)

8. | Xg10 CP(1,2,2,3,5,5) |2x1(2,2,3)

9. | Xg12 CP(1,2,3,4,5,7) | £(1,3,4),3(2,3,4)

10. | Xp6 C P(1,2,5,7,13) 1(2,2,3),4(1,2,6)

11. | X¢5 C P(1,2,2,3,3,5) 3(2,2,1),4(2,2,3)

12. | X012 C P(1,2,3,5,6,7) | 2% 3(2,2,1),1(1,2,6)
13. | Xia1s CP(2,2,3,7,9,11) | 2 x 3(2,2,1), 5(2,2,9)
14. | Xs10 CP(1,2,3,4,5,5) | 3(2,2,1),2x £(1,2,4)
15. | X204 CP(2,2,3,5,7,9) |3(2,2,1),£(2,2,3),5(2,2,7)
16. | X1014 C P(2,2,3,5,7,7) | £(2,2,1),2 x 3(2,2,5)
17. | X012 C P(2,2,3,5,5,7) |2x 1(2,2,3),1(2,2,5)
18. | X012 C P(2,3,3,4,5,7) |4x1(2,2,1),1(2,3,4)
19. | X6 C P(1,1,2,2,3,5) 1(2,2,3)

Table 3.1: Some index 2 Fano 3-folds

general then A’ is nef and big, and defines a birational contraction X’ — X,
where X is again a (singular) Fano 3-fold of index 2 containing a copy of
E =~ P? with X’ 5 = Opz2(1); in general, X will have finitely many nodes on E,

corresponding to the lines on X through P. The inclusion R(X, A) C R(X, A)
is the quasi-Gorenstein unprojection of E (in the sense of [PR] and [qG]).
This means that Fano 3-folds of index 2 could in principle be constructed
by starting from a variety such as one of Table 3.1, force it to contain an
embedded plane E = P? of degree 1, which can then be contracted to a
nonsingular point by an unprojection. This calculation has a number of
entertaining features, not the least the question of how to describe embeddings
(say) P* — P(1,2,2,5,6,9) and codimension 2 complete intersections X 14
containing the image.

The nonsingular case is well known: for example, a Fano 3-fold X C P7 of
index 2 and degree 6 has a projection X --» X, that coincides with the linear
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projection from a point, whose image is a linear section of the Grassmannian
Grass(2,5) containing a linearly embedded plane P? ¢ X < Grass(2,5).
There are two different ways of embedding a plane P? < Grass(2, 5) related
to Schubert conditions, and these give rise to the two families of unprojection
called Tom and Jerry, corresponding to the linear section of the Segre em-
bedding of the hyperplane section of P? x P2, and P! x P! x P2. See [P1]-[P2]
for details.

3.2.4 Alternative birational treatments

Whereas Table 3.1 (or a suitable completion), together with unprojection of
planes to nonsingular points, could thus provide a basis for a detailed classi-
fication of Fano 3-folds of index 2 (or at least for their numerical invariants),
it is possible that many of these varieties could be studied more easily by bi-
rational methods: in this paper we have mainly concentrated on projections
from nonsingular points, but each projection can presumably be completed
to a Sarkisov link (Corti [Co]), giving rise to a birational description.

There are alternative birational methods, for example, based on projec-
tions from quotient singularities; these may take us outside the Mori cate-
gory, as with the “Takeuchi program” used by Takagi in his study of Fano
3-folds with singular index 2 (see [T]). Most of the del Pezzo surfaces and
Fano 3-folds we treat here in fact have projections of Type I. For example,
Xes CP(1,1,2,3,4,5) 4, 2542t has equations

ury = Ag(z2,y,2,t) and wuz = Bg(z2,v, 2,1),
so that eliminating u gives a birational map from Xgg to the hypersurface
Xo: (Bx— Az) C P(1,1,2,3,4).

Algebraically this is a Type I projection, in fact of the simplest Bx — Ay type
(see [Ki], Section 2). However, from the point of view of the Sarkisov program,
it is quite different: introducing the weighted ratio 5 : y : t makes the (1,2,4)
blowup at P, not the Kawamata blowup — it is the blowup X; — X with
exceptional surface E of discrepancy 2/5, so that —Kx, = 2(A — 1/5F).
This preserves the index 2 condition, but introduces a line of A; singularities
along the y,t axis on Xy, taking us out of the Mori category. Compare also
Example 3.1.

3.2.5 How many Fano 3-folds of index > 3 are there?

Fano 3-folds of index f > 3 do not form projection cascades — a blowup
X" — X changes the index. Another way of seeing this is to note that for
f > 3, orbifold RR applied to x(—A) = 0 gives a formula for A% in terms of
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the basket of singularities B = {%(1, a,r — a)}, in much the same what that

% is determined by the classic orbifold RR formula for x(Ox):

(—Kx)CQ 7’2 —1
Ay [
24 Z 12r ’

(see [YPG], Corollary 10.3).

The numerical invariants of a Fano 3-fold are the data going into the
orbifold RR formula, giving the Hilbert series; compare [ABR], Section 4. Tt
consists of A3, % and the basket of singularities B; for f > 3, the first two
rational numbers are determined by B.

Suzuki’s Univ. of Tokyo thesis [Su], [Sul] (based in part on Magma pro-
gramming by Gavin Brown [GRD]) contains lists of the possible numerical
invariants of Fano 3-folds of index f > 2. She proves in particular that f < 19,
with f = 19 if and only if X has the same Hilbert series as weighted projective
space P(3,4,5,7) (we conjecture of course that then X = P(3,4,5,7).) For

f=3,...,19, the number of possible numerical types is bounded as follows:
f 1314|567 [8/9[10/11]12|13|14|15|16|17|18|19

nyg 1209171115 (312030 1]0]0,0]1]0]|1
Ny 20124114511 |5|2| 1

Here ny is a lower bound, and Ny a rough upper bound: n; refers to the
number of established cases in codimension < 2, that is, weighted projective
spaces, hypersurfaces or codimension 2 complete intersections. Ny is the
number of candidate baskets, that includes cases in codimension 4 and 5 that
we expect to be able to justify with more work, together with many less
reputable candidates.! For f > 9 the number n; is correct, except for an
annoying (and thoroughly disreputable) candidate with f = 10.

Rather remarkably, there are no codimension 3 Pfaffians except for the
case S of Section 1 (see (1.1)) with f = 2; so far we are unable to deter-
mine which candidate cases in codimension > 4 really occur (which accounts
for the uncertainties in the list). By analogy with Mukai’s results for non-
singular Fanos, one may speculate that Fano 3-folds in higher codimension
should often be quasilinear sections of certain “key varieties”, such as the
weighted Grassmannians treated in Corti and Reid [CR], and there may be
some convincing reason why there are few codimension > 3 cases.

3.2.6 How many interesting cascades are there?

For present purposes, for a cascade to be of interest, at least one of the
graded rings at the bottom must be explicitly computable; for us to get some

IThere are currently some problems with the upper bound N t; the rigorous bound is
much larger than given here. For details, see Suzuki’s thesis [Sul].
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benefit, it should realistically have codimension < 3. Also, we must be able
to identify the surface at the top of the cascade, for example, because it
has higher Fano index, so is a simpler object in a Veronese embedding. The
cascades of Sections 1-2 illustrate how these conditions work in ideal settings.
These conditions are restrictive, and probably only allow a small number of
numerical cases. Thus, whereas each of Fj, for k = 7,9,... is the head of a
tall cascade, involving k + 4 blowups, a moment’s thought along the lines of
Exercise 1.2 shows that essentially none of the surfaces in it has anticanonical
ring of small codimension. They do not extend to Fano 3-folds of index 2 for
the reason given in Exercise 1.2 and 3.2.2.

As another example, consider the Fano 3-fold X052 C P(1,2,3,5,6,7)
of Table 3.1, No. 12 and its half-elephant Sy012 C P(2,3,5,6,7). This is
a surface with quotient singularities 2 x $(2,2) and £(2,6) and K? = Z.
Its minimal resolution S — 9 is a surface with K; = —1, so is a scroll F,,
blown up 9 times, containing two disjoint —3-curves and a disjoint —3, —2, —2
chain of curves arising from the %(2, 6) singularity. S can be constructed by
blowing up Fy = P! x P! 9 times, with 3 of the centres on each of 2 sections,
and 3 other centres infinitely near points along a nonsingular arc. It seems
likely that if these blowups are chosen generically, this surface contains no
—1-curves not passing through the singularities. Thus there seem to be more
complicated cases in which there is no cascade at all. Now, in what way is
S1012 C IP(2,3,5,6,7) so different from T C P(1,2,3,4,5) of Section 27

3.3 Mirages

Mirages have been a common phenomenon in the study of weighted projective
varieties since Fletcher’s thesis. The question is to construct a graded ring
and a plausible candidate for a variety in weighted projective space having
a given Hilbert series. It happens frequently that we can find a graded ring,
but it does not correspond to a good variety, for example, because one of the
variables cannot appear in any relations for reasons of degree, so that the
candidate variety is a weighted cone. See p. 229 and Example 3.1 below for
typical cases.

A mirage is an unexpected component of a Hilbert scheme, that does not
consist of the varieties that we want, but of some degenerate cases, e.g., cones,
varieties with index bigger than specified, or varieties condemned to have some
extra singularities. The Hilbert scheme of a family of Fano 3-folds may have
other components, e.g., consisting of varieties with the same numerical data,
but different divisor class group. For example, the second Veronese embedding
of our index 2 Fanos X3y C P(1,1,2,3,5) gives an extra component of the
family of Fano 3-folds of index 1 with (—K)* =2+ 2.

More generally, it is an interesting open problem to understand what these
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mirages really are, and to find formal criteria to deal with them systematically
in computer generated lists. One clue is to consider how global sections of
Ox (i) correspond to local sections of the sheaf of algebras € Ox p(i) as
indicated in Remark 2.4.

Example 3.1 We work out one final legend that illustrates several points.
Looking for a Fano 3-fold X of Fano index f = 2 with a 7-(2,3,8) terminal
quotient singularity P € X by our Hilbert series methods gives (we omit a
couple of lines of Magma)

(1 —¢5)(1 —2)(1 — ¢19)

Px(t) = .
x(1) [I(1—t):ie1,2,2,3,3,5,11]

That is, the Hilbert series of the c.i. X910 C P(1,2,2,3,3,5,11). As with the
examples on p. 229, this candidate is a mirage for two reasons: the equations
cannot involve the variable of degree 11, and there is no variable of degree
8 to act as orbinate at the singularity (this kind of thing seems to happens
fairly often with candidate models). Adding a generator of degree 8 to the
ring gives a codimension 4 model X C P(1,2,2,3,3,5,8,11). We expect that
this model works: we can eliminate the variable of degree 11 by a Type I
projection X --+» X' corresponding to the (2,3,8) blowup, as described in
3.2.4. This weighted blowup subtracts

tll

(1—=t2)(1 —3)(1 —¢8)(1 —t11)

from P(T), and a little calculation

tll
(1—2)(1—5)(1 = 15)(1 — 11)
1_tﬁ_tS_t9_t10+t12+t13+t14+t16_t22
T A -2 - R - ) (1 - )

Px(t) —

gives the model for the projected variety X' as the Pfaffian with weights
in P(1,2,2,3,3,5,8).

Here X' is supposed to contain Il = P(2,3,8) : (xt =y, = 21 =t = 0). The
two ways of achieving this are: take

Tom: the first 4 x 4 block

or Jerry: the first 2 rows } in the ideal = I = (2,41, 21,1),
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that is, something like

r Yy Z1 Qs T Y =
2 2
21 yi be or 21 U
t Ct b%
dg

Cascades of projections from log del Pezzo surfaces

z°

3 2
Y+ 2
/

Cr

ds

so that X can be constructed either as a Tom or a Jerry unprojection (see
[PR], [P1]-[P2]). As in 3.2.4, the projected variety has a line of A; singulari-

ties along the s, 25 axis.
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On obstructions to the Hasse principle

Per Salberger

to Sir Peter Swinnerton-Dyer

Introduction

A basic problem in arithmetic geometry is to decide if a variety defined over
a number field k£ has a k-rational point. This is only possible if there is a
k,-point on the variety for each completion k, of k. It remains to decide if
there is a k-point on a variety with a k,-point at each place v of k. The first
positive results were obtained by Hasse for quadrics and varieties defined by
means of certain norm forms. A class of varieties, therefore, is said to satisfy
the Hasse principle if each variety in the class has a k-point as soon as it
has k,-points for all places v. The corresponding property for the smooth
locus is called the smooth Hasse principle. It is also natural to ask if weak
approximation holds. This means that the set of k-points is dense in the
topological space of adelic points on the smooth locus.

There are counterexamples to the Hasse principle and weak approximation
already for smooth cubic curves and cubic surfaces. These counterexamples
can be explained by means of a general obstruction to the Hasse principle
due to Manin based on the Brauer group of the variety and the reciprocity
law in class field theory. Most but not all of the known counterexamples
can be explained by this obstruction (Skorobogatov [Sk]). It is likely that
Manin’s obstruction is the only obstruction to the (smooth) Hasse principle
for rational varieties. But it has only been proved in very special cases.

It is more reasonable to study the Hasse principle for 0-cycles of degree
one. For curves it is possible to relate the uniqueness of Manin’s obstruction
to the finiteness of the Tate-Shafarevich group of the jacobian, which has
been proved for some elliptic curves by Kolyvagin and Rubin. Another fairly
general result is due to the author [Sa] and concerns conic bundle surfaces
over the projective line. There we proved a difficult conjecture of Colliot-
Thélene and Sansuc (Conjecture B on p. 443 in [CT/S1]). It says that a new
kind of Shafarevich group ITT'(k, M) defined by means of K theory vanishes
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for rational surfaces. This result has several consequences. One corollary con-
cerns the size of the Chow group of degree zero cycles (cf. [CT/S1] and [Sal).
Another corollary obtained in 1987 and announced in [Sa| is the following

0.1 Theorem Let k be a number field and X a conic bundle surface over
Pi. Then Manin’s obstruction is the only obstruction to the Hasse principle
for O-cycles of degree one.

The author included in [Sa] a proof when the Brauer group HZ(X,G,,)
of X contains no other elements than those coming from the Brauer group
of k. Then the Manin obstruction vanishes so that one obtains the simpler
statement that the Hasse principle holds for O-cycles of degree one. One of
the motivations for the present paper is to present a proof of Theorem 0.1,
by deducing it from our result on III'(k, M). This is an improved version of
the proof found in 1987.

It is based on a generalization of the descent theory of Colliot-Thélene
and Sansuc [CT/S2] for rational points to 0-cycles of degree one. The rest
of the proof is to show that certain diagrams commute. This is done using
techniques similar to those in Bloch [Bl] and [CT/S1].

The descent theory developed by Colliot-Thélene and Sansuc is an analog
of the classical descent theory for elliptic curves developed by Fermat, Euler,
Mordell and Weil. If p,: 7, — X is a class of such descent varieties and K
is an overfield of k, then the sets p,(7Z,(K)) form a partition of X (K). The
descent varieties we consider are torsors over X under commutative algebraic
groups.

For varieties with finitely generated torsion-free Picard groups, Colliot-
Thélene and Sansuc [CT/S2] introduced a special kind of descent varieties
called universal torsors. These are torsors under the Néron—Severi torus of
the variety having a certain universal property among other torsors. One of
the most important results in their paper is the following

0.2 Theorem Let X be a smooth proper rational variety with a k,-point
P, in each completion of k. Suppose that the set of these k,-points satis-
fies Manin’s Brauer group condition. Then there exists a universal X-torsor
p: T — X under the Néron—Severi torus T of X (see (1.2)) such that the
k,-torsors under T Xy k, at P, obtained by base extension are trivial for each
place v of k,.

This means that there are k,-points @), on 7 such that p(Q,) = P, for
each place v of k. Therefore, if the universal torsors over X satisfy the
Hasse principle, then Manin’s obstruction is the only obstruction to the Hasse
principle for X. There are many applications of this result. For some classes
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of rational varieties X it is possible to establish the Hasse principle for the
universal torsors either directly or by means of some intermediate torsors.

The proof of Theorem 0.2 in [CT/S2] uses explicit computations of cocy-
cles. The aim of Section 1 is to offer a proof based on simple functoriality
properties of étale cohomology. It is not necessary to assume that X is ra-
tional. It suffices to assume (just as in the proof in op. cit.) that the Picard
group of X x k is finitely generated and torsion-free for an algebraic closure
k of k. Only Brauer classes in the “algebraic part” HZ(X,G,,) of the Brauer
group of X occur. This is the kernel of the functorial map from HZ (X, G,,)
to H2(X x1 k,G,,). If X is smooth and rational, then I:TéQt(X, Gyy) is the full
Brauer group of X.

The basic idea of the proof is to “kill” the nonconstant algebraic part of
the Brauer group of X by considering a fibre product II of a finite number
of Severi-Brauer schemes over X which are trivial at the specializations at
the given k,-points. The vanishing of Manin’s obstruction for the algebraic
part of the Brauer group implies that HZ (I, G,,) contains no other elements
than those coming from the Brauer group of k. The given k,-points can be
lifted to k,-points on II. It is now easy to show that there exists a universal
I1-torsor which is trivial at these k,-points on Il and from this, construct the
desired universal X-torsor. (Use (1.4) and its functoriality under IT — X.)
This gives a natural proof of Theorem 0.2.

There is no direct extension of this proof to 0-cycles of degree one since
such cycles cannot be lifted to the Severi—-Brauer schemes over X. We there-
fore replace the Severi—-Brauer X-schemes by X-torsors under tori. This
makes the proof less transparent. But the role of the auxiliary torsors is
the same. They are used to simplify the cohomological obstructions. The
X-torsors denoted by S are in fact chosen in such a way that they give rise
to universal torsors over II after pull-back of their base with respect to the
morphism Il — X.

The advantage of this approach is that we can generalize Theorem 0.2 to
a statement where the k,-points P, are replaced by 0-cycles of degree one (see
Theorem 1.27). Any 0O-cycle z, on X X, k, defines a natural specialization
map p(z,) from H (X, T) to H} (k,, T,). Our generalization of Theorem 0.2
says that there exists a universal X-torsor p: 7 — X such that the class
[T] € HL(X,T) of T belongs to the kernel of p(z,) for each place v of k. This
generalization is more difficult to prove and apply than Theorem 0.2, since
the triviality of p(z,)([7]) in Hj (k,,T,) does not guarantee that z, can be
lifted to a O-cycle of degree one on 7 as in the case of k,-points.

The results in Section 1 are the following. We first give precise criteria
for when there exists a universal torsor for a large class of varieties over a
number field k. One necessary condition is that there are universal torsors
over the k,-varieties that are obtained by base extension from k to k,. A
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second necessary condition is given by considering the elements in the Brauer
group of the variety that become constant after all the base extensions to local
fields. We first formulate one criterion (Proposition 1.12) without assuming
that there are O-cycles of degree one over the local fields k, and then, as
an application, a second criterion (Proposition 1.26) under the assumptions
that such O-cycles exist over each completion k,. Such criteria were first
established in [CT/S2] in the case when the O-cycles are k,-points on X.

In Theorem 1.27 we then prove our generalization of Theorem 0.2 dis-
cussed above. It is worth noting that the result also applies to varieties with
HY(X,0x) = 0 and torsion-free Néron—Severi group, such as K3 surfaces.
But the rationality assumption in [CT/S2, Section 3| remains essential for
the conjecture that the universal torsors satisfy the Hasse principle. The con-
verse (ii) = (i) of Theorem 1.27 tells us that the universal torsors contain all
the information about the obstruction coming from the algebraic part of the
Brauer group.

To prove Theorem 0.1 we need a strange corollary of Theorem 1.27 (Corol-
lary 1.45) for torsors defined over an open subset of X. To prove this result,
we use arguments related to the “description locale des torseurs” in [CT/S2].
This corollary plays an important role in the proof of Theorem 0.1 in Sec-
tion 2.

In Section 2 we first recall the K-theoretic construction of Bloch [Bl]
for rational surfaces as well as some refinements in [CT/S1] and [Sa]. A
fundamental tool in [Bl] is a characteristic homomorphism ¢’ for rational
surfaces from the group Zy(X)° of O-cycles of degree zero to H}, (k,T) where
T is the Néron-Severi torus of X. In order to prove Theorem 0.1 we need
that this map behaves well under specializations. This is not immediate for
Bloch’s map, but easy to show for another map ¢ of Colliot-Thélene and
Sansuc defined by means of universal torsors. We shall therefore make use of
the fact that ¢ = ¢’ for rational surfaces. We then prove that the vanishing of
II1*(k, M) implies that the Manin obstruction is the only obstruction to the
Hasse principle for 0-cycles of degree one. This is proved for rational surfaces
and, more generally, for the class of varieties satisfying certain axioms (2.3)
and (2.4). In particular, we deduce Theorem 0.1 from the deep arithmetical
result on 1T (k, M) for rational conic bundle surfaces in [Sa].

This paper is a slightly revised version of a manuscript from 1993 in which
I prove Theorem 0.1 for a more general class of rational varieties with a pencil
of Severi-Brauer varieties. There is also a proof of this more general result in
the paper of Colliot-Théleéne and Swinnerton-Dyer [CT/SwD]. Their approach
is different and not based on descent theory.

I would like to express my gratitude to the referee for his careful reading
of the paper.
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1 Universal torsors, Brauer groups and
obstructions to the Hasse principle

Let k be a field, k a separable closure of k and G := Gal(k/k) the abso-
lute Galois group of k. There is a contravariant equivalence (cf. Borel [Bo])
between the categories of k-tori and the category of finitely generated torsion-
free discrete G-modules. If S is a k-torus, then there is a natural G-action
on the character group S := Hom(S, G,,5) of the k-torus S = k x;, S such
that S becomes a finitely generated torsion-free discrete G-module. Con-
versely, if M is a finitely generated torsion-free discrete G-module, then
D(M) := Homgy (M, k") is a k-torus with a natural k-structure induced by the
G-action 0% thereby deﬁning/z_l\k—torus. In the sequel we identify M with
its bidual D(M) and write id: D(M) = M for the canonical G-isomorphism.

We recall some basic notions and results from the descent theory of Colliot-
Thélene and Sansuc [CT/S2]. We will consider k-varieties over a perfect field
k satisfying the following assumptions.

X is a smooth proper k-variety such that X =k x X is
connected and Pic X := H} (X, G,,) is finitely generated (1.1)
and torsion-free.

Let m: § — X be a k-morphism from a k-variety S which is faithfully flat
and locally of finite type over X. Let S be a k-torus. Then 7: § — X is said
to be a (left) X-torsor under S if there is a (left) action o: S x & — § such
that the k-morphism

(o,pry): Sxx S — Sxx S

induced by ¢ and the second projection pry: S xx & — S is an isomor-
phism. We usually write S rather than 7: & — X for the X-torsor. An
X-torsor under a k-torus is locally trivial in the étale topology by a theorem
of Grothendieck. The isomorphism classes of X-torsors under S correspond
to elements of Hj (X, S).

Now let x: HL(X,S) — Homg (S, Pic X) be the homomorphism induced
by the additive pairing H} (X, S) x Hom(S,G,, ;) — H% (X, G,, 7).

1.2 Definition

(a) Let S be an X-torsor under S and [S] its class in H}(X,S). Then
x([S]) € Homg(S, Pic X) is called the type of S.

(b) The Néron-Severi torus T of X is the k-torus D(Pic X) associated to
the discrete G-module Pic X.
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(¢) A universal torsor over X is an X-torsor under the Néron—Severi torus
T whose type is id: T — Pic X.

By considering the spectral sequence
Ext} (S, R'p.Gyx) = Exti?(p"S, Gp x) (1.3)

for a k-torus S and the structure morphism p: X — Speck (see [CT/S2,
1.5.1]), Colliot-Thélene and Sansuc obtained the exact sequence:

0 — HA:(k,S) — HL(X,S) = Homg(S, Pic X)
2 HE(k,S) — HA(X,S). (1.4)
The homomorphisms HY (k, S) — HZ (X, S) are the functorial contravari-
ant maps in étale cohomology. We shall not give any explicit description of §.
All we need in the proofs is that the sequence (1.4) is functorial under field
extensions of k£ and homomorphisms of k-tori.

Let f[gt(X, S) := Ker(HZ(X,S) — HZ(X,S)). By analysing (1.3) fur-
ther, one extends the end of (1.4) to an exact sequence:

Homg (S, Pic X)
2 H2(k, S) — H%(X,S) — Extg(S, PicX) — H3 (k,S). (1.5)
In particular for S = G, x, one obtains the well-known sequence:
HZ(k, G p) — H2(X,Gpp) — Extg(Z,PicX) — H3 (k,Gpy).  (1.6)

The next result is also in [CT/S2]. We include a proof, since op. cit. does
not prove the implication (iii) = (ii) directly.

1.7 Proposition Let k, X be as in (1.1) and let T be the Néron—Severi
torus of X. Then the following conditions are equivalent.

(i) HZ(k,T) — HZ(X,T) is injective for the Néron-Severi torus T.
(ii) HZ(k,S) — HZ(X,S) is injective for any k-torus S.

(111) There exists a universal torsor over X.
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Proof (ii) = (i) is trivial and (i) = (iii) is immediate from (1.4). To prove
(iii) = (ii), let S be a k-torus and x € Homg(S, Pic X). Then there is a dual
homomorphism D(x) of k-tori T'— S inducing a commutative diagram

HL(X,T) — Homg(T,PicX) — HZ(k,T) — HZ(X,T)

l l l l

HL(X,S) — Homg(S,PicX) — H(k,S) — H2(X,S)

such that id € Homg(7T', Pic X) goes to y in Homg(S, Pic X). Hence 6(x) = 0,
thereby proving (iii) = (ii). O

Recall that a 0-cycle on X is a finite formal sum z = > n; P; where the P,
are closed points on X and the n; integers. The integer n := > n;[k(P;) : k] is
called the degree of z. Denote by Zy(X) the free abelian group of 0-cycles on
X. For each k-torus S and each positive integer ¢, there is a natural additive
pairing

p: Zo(X) x Hi\(X. ) — Hjy(k,S) (L8)

sending a pair consisting of a closed point P € Z3(X) and an element
e € H.(X,S) to the corestriction in H. (k,S) of the pullback ¢(P) of ¢ in
H! (k(P),S). Tt can be proved that this pairing factorizes through rational
equivalence, but we do not need this.

If z = > n;P; is a O-cycle, write p(z): HL(X,T) — H. (k,T) for the
homomorphism sending ¢ € H. (X, T) to p(z,e) € H.(k,T). This gives a
retraction of the functorial map from H} (k,T) to H.(X,T) when z is of
degree one. Then by Proposition 1.7, there exists a universal torsor over X.

Let T' be the Néron-Severi torus of X and 7 a universal X-torsor. Let
é1: Zo(X) — Hi(k,T) be the homomorphism which sends 2z € Zy(X) to
p(z,[T]) (see (1.8)), and Zy(X) the subgroup of Zy(X) consisting of 0-cycles
of degree zero.

1.9 Proposition The restriction of ¢r to Zo(X)° is independent of the
choice of universal torsor T .

Proof Use (1.4) and the fact that
Zo(X)° x Tm(HY(k, T) — HY(X,T)) € Ker(p). O

We therefore drop the index and write ¢ for this map Zo(X)" — HL (k, T).
For other constructions of ¢ that do not depend on the assumption that a
universal torsor exists, see [CT/S1, Section 1] and the next section.

The following almost trivial lemma from homological algebra will be use-
ful.



258 On obstructions to the Hasse principle

1.10 Lemma Let L be a finitely generated torsion-free discrete G-module.
Then

(a) HY(G,Z) = 0.
(b) H' (G, L) = Extg(Z, L) is finite.

(c) Let €1,6s,...,¢, € Extg(Z"), L) and ¢ € Extg(Z"), L) correspond to
(e} € DExto(Z. 1),

Then there is an extension of discrete G-modules
0—-L—->M-—>2Z" =0 ()
such that

(i) Ker(Extg(Z, L) — Extg(Z, M)) is the subgroup generated by €1,¢9,. .. ,
Er,

(ii) the connecting homomorphism Homg(L, L) — Extg(Z") | L) induced by
(%) sends id € Homg (L, L) to €.

Now let k be a number field. Denote by €2, the set of places of k£, and by
k, the v-adic completion of k for a place v. Choose an algebraic closure k,, of
k, and an embedding k C k, for each v € Q. We may then regard the Galois
group G, := Gal(k,/k,) as a subgroup of G = Gal(k/k) for each v € Q.

If M is a discrete G-module and ¢ a positive integer, write

1L (k, M) = Ker(Hi(g, M) — [ H(G. M)).

all v

In particular, if M is the group S (k) of k-points on a k-torus S, we write
LT (k, S) := I (k, S(k)). Finally, set

Yl(k,S) —Coker(H1 (G, S(k @Hl G, S )
all v
The following result from class field theory is due to Nakayama and Tate

[Tal]. It plays an important role in [CT/S2].

1.11 Theorem Let k be a number field and S a k-torus. Then there is a
perfect pairing

1% (k, S) x 1Y (k, S) — Q/Z
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which is functorial under homomorphisms of k-tori. The kernel of the in-
duced epimorphism from Hom(H(G,S),Q/Z) to 1I1*(k, S) is isomorphic to
Yl(k,S). Moreover, H3 (k,S) =0 for any split k-torus S.

The next proposition generalizes a result in Section 3.3 in [CT/S2]. If
we use the word “locally” for a property which holds for X, := k, x X for
each place v € (), then we can express Proposition 1.12 in the following
way. There exists a universal torsor over X if and only if there exists one lo-
cally, and moreover every locally constant Azumaya algebra over X is Brauer
equivalent to a product of a locally trivial Azumaya algebra and a constant
Azumaya algebra. We can replace HZ by HZ in (i), since any “locally” con-
stant Brauer class belongs to Ig'gt(X ,G,n). We prefer the formulation here
since the universal torsors are related to H2 (X, G,,) rather than H2 (X, G,,).

1.12 Proposition Let k be a number field and X a smooth proper geo-
metrically connected variety over k for which Pic X is finitely generated and
torsion-free. Then the following statements are equivalent.

(i) The map from Ker(ﬁe?t(X, Gm) — [ L » f[gt(Xy,Gm)) to

Ker(ﬁ;(x, Gon) /T H2 (k, G) — [[ H2(X0, ) /Tm HE (ko Gm)>
all v

18 surjective, and for each place v € €y there exists a universal torsor
over X,.

(ii) There exists a universal torsor over X.

Proof We apply Lemma 1.10 for the G-module L = Pic X and choose a set
of generators e, &y, ... , &, of Ker(Extg(Z, Pic X) — [L , Exte, (Z, Pic X)).
Let € € Extg(Z"), L) correspond to @)_, e € Extg(Z,L). We then obtain
an exact sequence of discrete G-modules

0—PicX - M —Z" -0 (1.13)
such that
T (k, Pic X) = Ker(H"(G, Pic X) — H'(G,M)); and (1.14)
id € Homg(Pic X, Pic X) maps to ¢ under the connecting

homomorphism Homg(Pic X, Pic X) — Extg(Z™, Pic X) (1.15)
induced by (1.13).

the extension (1.13) is split as a sequence of G,-modules

for each v € ;. (1.16)
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Now apply D(...) to (1.13) and consider the dual sequence of k-tori:
l1-R—-S—-T-—1, (1.17)

where T is the Néron-Severi torus of X and R = [[/_; G,nx. From (1.14)
and the arithmetical duality result in Theorem 1.11 we obtain that:

12 (k, S) C Ker(HZ (k,S) — HZ(k,T)) (1.18)
and from (1.16) that the sequences of k,-tori
1-R,— S, —T,—1 (1.19)

induced from (1.17) split for all places v of k.

Proof of (i) = (ii) Consider the following commutative diagram with
exact rows and columns

HZ(k,R) — H2Z(X,R) — Extg(R,PicX)

l l l

H2(k,S) — HZ(X,S) — Extg(S,PicX)

| | | (1.20)

H2(k,T) — HZ(X,T) — Extg(T,PicX)

l

0

where the horizontal sequences are those in (1.5) and the vertical sequences
are induced by (1.17). The complex in the second column is exact since (1.17)
splits over k. The map H2 (k,S) — HZ(k,T) is surjective since H (k, R) = 0
for a number field & (see (1.8)).

In order to prove that there is a universal torsor, it suffices by Propo-
sition 1.7 to show that HZ(k,T) — HZ(X,T) is injective. So let xk €
Ker(HZ (k,T) — ﬁ]gt(X, T)) and lift s to an element 3 € HZ(k,S). Then, by
exactness of (1.20), there exists v in Ker(HZ(X, R) — Extg(S, Pic X)) with
the same image as 3 in H2 (X, S). Let 7, be the image of v in H2(X,, R) and
consider the following commutative diagram with exact rows and columns.

0 0 0

l l l

0 — H(k,R,) — H(X,,R) — Extg (R, PicX,)  (1.21)

l l l

0 — Hx(k,,S,) — H(X,,S,) — Extg,(S,,PicX,)
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The zeros in the columns come from the splitting property in (1.16) and
(1.19), and the zeros in the rows from the existence of universal torsors over
X, (see Proposition 1.7). Since v goes to zero in Extg(S, Pic X), we conclude
from (1.21) that v, € Im(HZ(k,, R,) — H2(X,, R,)) for each v € Q). On
considering the images of v in H2(X,G,,) under the maps from HZ2 (X, R)
induced by the r projections from R = ngl Gk to Gy, we deduce from
the first assumption in (i) that there exists a € HZ(k, R) that maps to
v, in H%(X,, R,) for each v € €. Let & be the image of o in HZ(k,S).
By the choice of v, we conclude that 5 — & goes to 0 in [],, , }ngt(Xv, Sy)
and by the injectivity of the functorial maps H2 (k,, S,) — H2(X,,S,) that
B — & € II%*(k,S). But then the image k of 8 — & in HZ(k,T) is equal to
zero (see (1.18)). This completes the proof of (i) = (ii).

Proof of (ii) = (i) Let 7 be a universal torsor over X. Then 7, := k, x T
is a universal torsor over X, for each v € Q. To prove the first part of (i),
consider the following commutative diagram with exact rows

Hé}t<k7T) - Hét(X,T) — HOmg(f,PiCY) — 0

l l l (1.22)

HZ(k,R) — HZ(X,R) — Extg(R,PicX) — 0

Let v € HZ(X,R) be the image of [T] € HL(X,T) and 71,7, ... ,7, the
images of v in HZ(X,G,,) under the maps from HZ (X, R) induced by the
r projections from R = H;Zl G to Gy,. Then vq,79,...,7 have images
€1,€9,...,& In Extg(}A%, Pic X). Thus by the choice of £; (see (1.6)) we get
that the kernel of the map

ﬁe?t(X7 Gm)/ImHézt(k7Gm) - H ﬁ§t<Xv>Gm)/ImHé2t(kvaGm)

all v

is generated by the images of 71,7, ... , 7, in H2(X, G,,)/Im HZ(k,G,,). To
verify the first condition in (i), it thus suffices to show that the elements
1,725 - belong to Ker(HZ(X,Gp) — Ly » H2(Xy, Gyn)). That is, we
must prove that [7] belongs to the kernel of the composite map:

Hélt(Xv T) - ﬁéQt(X> R) - H ﬁéQt(XvaRv)'

all v

But [7,] € HL(X,,T,) maps to zero in H2(X,, R,) since the sequence 1 —
R, — S, — T, — 1 splits. This completes the proof of Proposition 1.12. [J
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Now suppose that we are given a 0O-cycle z, on X, for each place v € €.
If S'is a k-torus, let S, be the k,-torus obtained by base extension and let

poi Zo(X,) x Hi\(X,, S,) — Hi(ky, S,) (1.23)

be the pairing described in (1.8). We denote this map by p, for all k-tori
S and all positive integers i. Let p,(2,): H.(X,, S,) — Hi(ky,S,) be the
homomorphism sending €, € H% (X,, S,) to p,(2,,,) € Hi (ky, Sy).

Now recall the fundamental exact sequence of Hasse (see, for example,
Tate [Ta2])

0 — HZ(k,G,) — @ Hz (ky, G) — Q/Z — 0. (1.24)

all v

The map from HZ (k, G,,) is the direct sum over v € €, of the functorial maps
HZ(k,G,,) — HZ(k,,G,,). The map to Q/Z is the direct sum of the local
maps inv,: HZ(k,, G,,) — Q/Z which are isomorphisms for non-archimedean
places. The fact that the sum of all local invariants is 0 for an element of the
Brauer group HZ (k,G,,) of k is called the reciprocity law.

Manin [Ma] noticed that the reciprocity law gives rise to the following
necessary condition for the existence of a 0-cycle of degree r on X.

There exists a set of 0-cycles z, of degree r on X, indexed by

vE Qg st Yy, vy (pe(2))(Ay) =0 for all A € HZ (X, G,,). (1.25)

We now relate the Brauer group obstruction to the Hasse principle for
0-cycles of degree one to another obstruction based on universal torsors. The
following result is an immediate corollary of Proposition 1.12.

1.26 Proposition Let k be a number field and X a smooth proper geometri-
cally connected k-variety for which Pic X is finitely generated and torsion-free.
Suppose given a 0-cycle of degree one z, on X, for each place v € Q. Then
the following statements are equivalent.

(i) Manin’s reciprocity condition }_y , inve(py(2,))(As) = 0 holds for all
A€ Ker (X, Gp) — Tl o F2 (X, G/l H (i, Go).

(i) There exists a universal torsor over X.

Proof Given 0O-cycles z, of degree one on X, for each place v € €, we have
to prove that the conditions (1.12i) and (1.261) are equivalent. It was already
noticed after (1.8) that the existence of a 0-cycle of degree one on X, implies
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the existence of a universal torsor over X,. It thus suffices to show that the
subgroup of

Ker(H(X,Gp) — [ H& (X0, Gun) /T HE (k. o) )

all v

generated by Ker<f[§t<X7 Gm) - Hall vﬁéQt(X%Gm)) and IHl(Hgt(k,Gm))
equals the subgroup of elements A satisfying >, , invy(pu(20))(Ay) = 0.
This is a formal consequence of the Hasse exact sequence of Brauer groups
(1.24) and the fact that for all places v of k, the map p,(z,) defines a retraction
of H2(ky,Gp) — HZ(X,,Gy,). O

We now consider Manin’s obstruction to the Hasse principle for 0-cycles
of degree one given by arbitrary elements in HZ (X, G,,) and relate it to the
existence of universal torsors with certain properties. The following result
was proved in [CT/S2, 3.5.1] in the case of rational points.

1.27 Theorem Let k be a number field and X a smooth proper geometri-
cally connected k-variety for which Pic X is finitely generated and torsion-free.
Suppose given a 0-cycle z, of degree one on X, for each place v € Q. Then
the following statements are equivalent.

(i) Manin’s reciprocity condition Y ., ,inv,(py(2y))(A,) = 0 holds for all
A€ HL(X,G).

(i1) There exists a universal torsor T over X such that p,(z,)([Z,]) = 0 in
H} (ky,T) for each v € .

Proof We again apply Lemma 1.10 for the G-module L = PicX. Let
€1,€2,... ,& be generators of Extg(Z,Pic X), and let ¢ € Extg(Z"), L) cor-

respond to {¢;}}_; € Extg(Z, PicX). We then obtain an exact sequence of

discrete G-modules:
0—PicX =M —Z" -0 (1.28)
such that
HY(G,M)=0; and (1.29)

id € Homg(Pic X, Pic X) maps to ¢ € Extg(Z"), Pic X)

under the connecting homomorphism induced by (1.28). (1.30)

Now apply D(...) to (1.28) and consider the dual sequence of k-tori.
1= R—-S—->T-—1, (1.31)



264 On obstructions to the Hasse principle

where 7' is the Néron—Severi torus of X and R = [[;_, G, x. From (1.29)
and the arithmetical duality result in Theorem 1.11 we obtain

Y'(k,S) =0 and III*(k,S) = 0. (1.32)

Proof of (i) = (ii) Consider the following commutative diagram with
exact rows and columns:

HL(k,S) — HL(X,S) — Homg(S,PicX)

l l l

HL(k,T) — HL(X,T) — Homg(T,PicX)

| | | (1.33)

HZ(k,R) — H2Z(X,R) — Extg(R,PicX)

l l l

H2(k,S) — H(X,S) — Extg(S,PicX)

deduced from (1.31) and the spectral sequence in (1.3). We know from Propo-
sition 1.26 that there exists a universal torsor over X. Let [7] € H} (X, T)
be the class of one such torsor 7 and consider the images ~ in H, 2(X,R) and
Yy € ﬁézt(Xv,Rv), v € Q, of [T]. Then, since R = H;Zl Gk, we deduce
from Manin’s reciprocity condition (i) and the Hasse exact sequence (1.24)
that there exists 8 € HZ (k, R) that maps to p,(2,)(7,) in HZ (k,, R,) for each
v € Q. But p,(2,)(7) € Ker(HZ (ky, R,) — HZ(k,, S,)) since it is the image
of py(2,)([T0]) € Hi(ky, T,) in H(k,, R,). Therefore, 8 € Ker(HZ(k, R) —
HZ(k,S)) since IIT?(k, S) = 0 (cf. (1.32)). Let a € HY (k,T) be a lifting of 3
and «, the image of « in Hg, (k,, T,). Then p,(z,)([Z,])—«, vanishes for all but
finitely many v € €, and maps to 0 in HZ (k,, R,) for all v € . This com-
bined with the fact that U'(k, S) = 0 implies that there exists o € H} (k, S)
whose image o in H}, (k,,T,) is py(2,)([T2]) — v, for each v € Qi Let &
be the image of o in H(X,T) and & the image of o in HY(X,T). Then,
since & + & belongs to the image of HY (k,T) — H (X,T) it follows that
(7] := [T] 4+ & + & is the class of a torsor 7 of the same type as 7. Further,

pu(2,)([Z5]) = 0 for all v € Q. This completes the proof of (i) = (ii).

Proof of (ii) = (i) Let 7 be a universal torsor over X with the property
that p,(2,)([Z,]) = 0 in H}(k,,T) for all v € €. We now proceed as in
the proof of Proposition 1.12, (ii) = (i) and consider the image 7 of [T] €
HL(X,T) in H%(X,R) under the vertical map in (1.33), and the images
V1,72, -+ Y Of v in ﬁ[gt(X, G,,) under the maps from ﬁ[gt(X, R) induced by
the r projections from R = [[;_; Gy to Gy, Then py(z,)(7;) = 0 for all
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j =1,...,rand all places v of k. This together with the reciprocity law (1.24)
implies that (z,),cq, satisfies Manin’s condition for any A € H 2(X,G,,) in
the subgroup I' generated by 71,72, . .. ,7, and the image of HZ(k,G,,). But
the images e1,¢€9,...,¢, in Extg(Z,Pic X) of 71,72,... ,7 were chosen to
generate Extg(Z, Pic X). Thus, I' = I:Tézt(X, Gu), as was to be proved.

1.34 Corollary Let k be a number field and X a smooth proper geomet-
rically connected k-variety for which Pic X is finitely generated and torsion-
free. Suppose given a 0-cycle z, of degree one on X, for each place v such that
Manin’s reciprocity condition Y, , invy(py(2,))(Ay) = 0 holds for all A €
ﬁ]éQt(X7 Gum). Then for each k-torus S and each element T in Homg(g, Pic X)
there exists an X -torsor S under S of type T such that p,(z,)([Sy]) = 0 in
H (K, S) for all v € Q.

Proof We know from (1.24) that there exists a universal torsor 7" over X
such that p,(2,)(|7,]) = 0 in H} (k,,T,) for each v € Q. Let S :== 7T xT S
be the torsor under S induced from 7 by the k-homomorpism D(7): T'— S
dual to 7. Then S satisfies the above conditions.

1.35 Theorem Let k be a number field and X a smooth proper geometrically
connected k-variety for which Pic X is finitely generated and torsion-free. Let
T be the Néron—Severi torus of X and r an integer. Let z, be a 0-cycle of
degree v on X, for each place v € 4, such that Manin’s reciprocity condition
>t o Ve (pu(20))(Ay) = 0 holds for all A € H%L(X,G,,). Then for each
X -torsor under T there exists another X -torsor T of the same type such that

pu(2,)([T5]) = 0 for all v € Q.

Proof An examination of the proof of (i) = (ii) in (1.24) reveals that we
only used the hypothesis that » = 1 to prove that there exists a universal

torsor 7. The rest of the arguments is valid for any r and any 7T-torsor
7. 0O

We now make use of the ideas of [CT/S2, 2.3]. Let k be a perfect field
and let X be as in (1.1). Let U be an open k-subvariety of X with Pic U = 0.
If § is an X-torsor, let Sy be the U-torsor obtained by restriction.

Consider the exact sequence of G-modules for the absolute Galois group

G := Gal(k/k).
0 — k[U]*/k" — Div; X — PicX — 0, (1.36)

where Z is the complement of U in X, and Divy X the group of Weil divisors
on X with support in Z. On applying D(...) we obtain a dual exact sequence
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of k-tori
1-T—-N-V -1 (1.37)

The spectral sequence (1.3) and the exact sequence (1.37) give rise to the
commutative diagram
Homg(V, k[U]*) > Extg(T, k[U]")
|~ 1= (1.38)
Hg (U, V)

=
=
=

The second vertical map is onto since PicU = 0 (see [CT/S2, 1.5.1]).

1.39 Proposition Let ¢ € HL(U,T). Then the following two conditions
are equivalent.

(i) There exists a universal X -torsor T such that [Ty] = e.

(i) There is a section o € Homg(V, k[U]*) of the obvious map : k[U]* —
k[U*/k" that maps to € in HL(U,T).

Proof See the “description locale des torseurs” in Section 2.3 of [CT/S2].
Now assume that (1.39ii) holds. Then for any k-torus S there is a com-
mutative diagram

S
|= |= (1.40)

defined in the following way. The vertical isomorphisms come from the spec-

tral sequence (1.3) (see [CT/S2, 1.5.1]). The horizontal maps in the first

square are the functorial maps and the horizontal map in the second square

is induced by the G-retraction otp/id: E[U]* — k of the inclusion & C k[U]*.
By completing the second square we obtain a homomorphism:

ru: Hy(U,S) — Hg(k, S) (1.41)

which is a retraction of the functorial map from H (k, S) to H. (U, S).
Let 7: H(X,S) — Hj(k,S) be the composite of the restriction map
from H} (X, S) to HL(U,S) and ry.
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1.42 Proposition Let T be a universal X -torsor and o € Homg(V, k[U]*) a
section of 1 k[U]* — V such that o maps to the class [Ty] of Ty in HA(U,T)
under the map in (1.38). Then the following hold:

(a) 7 is a retraction of the functorial map from HY (k,S) to H(X,S);
(b) 7 is functorial under homomorphisms of k-tori;

(¢c) r([T]) = 0;

(d) r depends only on [T] and not on the choice of o.

Proof (c) To do this, we use the following commutative diagram:
Homg(V,k[U]) % Extg(T,k[U]")
Homg (V. k[U) /&) - Extg(T, kU /%) (1.43)

HOIIlg( > E[U]*) i> Eth (Ta E[U]*)

where the horizontal maps are induced by (1.37) and the vertical maps by
¢ and o. Then 6(0) corresponds to [7] under the isomorphism between
Extg(T, k[U]*) and HY(U,T). Therefore, ry([Ty]) = 0 if and only if §(o)
maps to itself under the endomorphism of Extg(f ,k[U]*) induced by o
But this is clear from the commutative diagram (1.43).

(d) Let S be an X-torsor under S of type x([S]) € Homg(S, Pic X).
Then S is of the same type as the X-torsor 7 xS obtained from the k-
homomorpism D(7): T'— S dual to 7 = x([S]). Therefore, [S] — [T xT S] €
H.(X,S)) is the image of a unique element o in H} (k,S) by (1.4). Also,
r([T xTS]) = 0 by (b) and (c). Hence, r([S]) = a by (a), thereby completing
the proof. [

Now suppose there is a 0-cycle z of degree one on X. Then (cf. (1.8))
there is a natural retraction p(z): Hj(X,S) — H} (k,S) associated to z for
each k-torus S which is functorial under homomorphisms of k-tori.

1.44 Proposition Let k, X be as above and suppose that there exists a
universal X -torsor T such that p(2)([T]) = 0. Let S be a k-torus and r the
retraction from HL (X, S) to H (k,S) defined by [T] (see (1.42d)). Then the

two maps p(z) and r coincide.
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Proof The map p(z) satisfies the same axioms (1.42a—) as r. It therefore
follows from the proof of (1.42d) that the two maps coincide. O

One can give another proof of Proposition 1.44 based on the G-retraction
from k[U]* to k~ associated to 2.
The following result will be used in the next section in the case S =T

1.45 Corollary Let k be a number field and X a smooth proper geometri-
cally connected k-variety for which Pic X is finitely generated and torsion-free.
Let S be a k-torus. Suppose that for each v we are given a 0-cycle z, of degree
one on X, := X Xy k, and an X,-torsor S, under S, such that the following
hold.

(i) Manin’s reciprocity condition Y, . inv,(py(2,))(Ay) = 0 holds for all
A€ H2(X,Gy).

(1i) There exists an element n of Hi(k(X),S x; k(X)) having the same
image as [S,] in HE (k,(X), S, X, ko(X)) for each v € Q.

Then there exists an element o € Hj (k,S) with image equal to p,(z,)([S,])
in Hi (ky, Sy) for every v € Q.

Proof Let U be an open nonempty subset of X and v € € any place
of k. We first show that there exists a 0O-cycle w, of degree one on U, :=
U Xy, ky with p,(u,)(Ay) = po(2,)(A,) for all A, € HZ(X,,G,,) and such
that p,(uy)([Se]) = pu(2,)([Sy]). By the additivity and functoriality of p,
under corestrictions it suffices to do this in the case where z, is a k,-point P,.

Let O, be an affine open neighbourhood of P,. We may then represent
each element in HZ (X, G,,) by an Azumaya algebra over O, (see [Mi, p. 149])
and consider the corresponding Severi-Brauer scheme over O, (cf. op. cit.).
We shall only consider elements in the finite kernel of the specialization map
from HZ(X,,G,) to Hz(ky(P,),G,,). Let I, be the fibre product over O,
of the Severi-Brauer schemes corresponding to restrictions of these elements
in H%(X,,G,,). Then II, is a smooth proper O,-scheme and its fibre over P,
is a multiprojective space over k,.

Let W, be the restriction over O, of an X, -torsor of the same type as
S, which is trivial over P,. It then follows from the v-adic implicit function
theorem applied to the fibre product of II, and W, over O, that there exists
a k,-point on U, N O, that can be lifted to k,-points on II, and W,. This
k,-point has all the desired properties. We may therefore replace z, by a
0-cycle on U, for each v without changing the hypothesis in Corollary 1.45.

Now choose an open subset U of X such that PicU = 0 and such that n
is the restriction of an element e € Hj (U, S). Assume, as we may, that z, is
a 0-cycle on U, for each v € ().
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Now apply Theorem 1.27. Then there exists a universal torsor 7 over
X such that p,(2,)([T]) = 0 in H}(k,,T) for all v € €. Also, let o be
a G-module homomorphism from k[U]*/k to k[U]* as in Proposition 1.39.
Finally, let ry be the retraction from Hj (U, S) to HZ (k,S) in (1.41) defined
by means of o.

Then o = ry(e) € Hi (k, S) is the desired element with image p,(z,)([S,])
in H} (k,,S,) for all v € Q4. To show this, we fix one place v and change
the notation so that £ = k,. We also omit the index v for all varieties,
morphisms, cohomology groups defined over k = k,. Thus U, resp. p(2)([S]),
will mean U, resp. p,(z,)([Sy]), and e, 7 will now mean the images after
base extension to k,. We shall also make use of the functoriality of r and p(z)
under extensions of the base field without further comments.

Then we get an element e € HL (U, S), a O-cycle z of degree one on U, a
universal X-torsor 7 with p(z)([7]) = 0 and an X-torsor S under S satisfying
the following condition:

The image of ¢ € HL (U, S) in H (k(X),S) equals that of the (%)
class [S] € H(X,S) in H}, (k(X),S).

But it follows from the commutative diagram (cf. (1.40))

that the restriction map from Hj (U, S) to HZ (k(U),S) is injective. There-
fore, ¢ = [Sy], and hence ry(e) = r([S]). Moreover, r([S]) = p(2)([S]) by
Proposition 1.44. Hence ry(g) = p(2)([S]), as was to be proved.

In Corollary 1.45 and some other results in this section we have assumed
that the functorial maps from Pic X to Pic(k, x X) are isomorphisms for all
v € ;. This was used to guarantee that the base extensions of universal X-
torsors to torsors over X, remain universal. We therefore include the following
result for which we could find no reference.

1.46 Proposition Let k be an algebraically closed field, and let X be a
smooth and proper k-variety for which Pic X s finitely generated. Then the

functorial map from Pic X to Pic(X X E) is an isomorphism for any extension
field E of k.

Proof The assumption implies that H*(X,Ox) = 0. Thus Pic(X x V) =
Pic X x PicV for any (integral) k-variety V' by the exercise on p. 292 in [Ha].
(The assumption that X is projective is not necessary since Grothendieck’s
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theorem on pp. 290291 in op. cit. also holds for proper morphisms.) Now
make use of the fact that E is the union of its finitely generated k-subalgebras
A. Therefore, there are canonical isomorphisms

lim Pic(Spec A) = Pic(E) =0 and
Pic(X x F) = lim Pic(X x Spec A) = Pic X @ lim Pic(Spec A) = Pic X,

as was to be proved.

2 K theory and obstructions to the Hasse
principle

Let k be a perfect field, k an algebraic closure of k and G := Gal(k/k) the
absolute Galois group of k. Let X be a smooth proper k-variety such that
X =k x X is connected.

Then there is a complex of discrete G-modules (cf. [Bl])

P Kx(E(o)) === P k() v, @Z (2.1)

c€Xo ~eX1

where X; denotes the set of points of dimension i. The first map is given by
tame symbols and the second is the usual divisor map. Let M be the cokernel
of the first map and 69%0 Z the image of the second. (This notation will
become natural later after (2.4).) Then (2.1) induces a short exact sequence
of discrete G-modules

0 — Ker(div)/Im(tame) — M — @Oyo Z — 0. (2.2)

Let Z;(X) be the free abelian group of cycles of dimension i on X; write

t

R;(X) for the subgroup of i-cycles rationally equivalent to zero and Ch, ( )=
Z{(X)/R;i(X) for the Chow group of cycles of dimension i on X. The degree
of a O-cycle on X depends only on its rational equivalence class since X is
proper. Let Ay(X) be the subgroup of Chy(X) of O-cycles of degree 0. Finally,

define the map
7 Chy(X) @z k — Ker(div)/Im(tame)
by the inclusions:

(X))@ k = @E* C Ker(div) and R;(X)®zk C Im(tame).
X1

Now let k, k, G, X, X be as above and assume in addition that the
following holds.
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2.3 Assumptions
(i) Chy(X) and Pic(X) = Ch,,_;(X) are finitely generated and torsion-free.
(ii) The intersection pairing U: Ch;(X) x Ch,_;(X) — Z is perfect.

(iti) 7: Chy(X) ®z k — Ker(div)/gIm(tame) is an isomorphism.

Then U and 7 define an isomorphism between the Néron—Severi torus
T = D(Pic X) and Ker(div)/Im(tame). Suppose further that

Ap(X) = 0. (2.4)
Then the Galois cohomology of (2.2) gives rise to an exact sequence

Zy(X)" — H'Y(G, T (k) — H'(G, M)
— Z/deg(Zy(X)) — H*(G,T(k)), (2.5)

where Zy(X) is the group of 0-cycles of degree 0. Denote by ¢' the map
from Zy(X)° to H},(k, T) obtained from (2.5) by identifying H'(G, T'(k)) with
HL(k,T).

2.6 Example Let k& be a perfect field and X a smooth proper rational
geometrically connected k-surface. Then Bloch [Bl] showed that (2.3) and
(2.4) hold and from that deduced the map ¢’ described above. He also noticed
that the values of ¢’ only depend on the rational equivalence class in Zy(X).

2.7 Proposition Let k, k, G, X, X be as above and assume in addition
that (2.3) and (2.4) hold. Suppose that there ezists a universal torsor over X .
Then the maps ¢ (see Proposition 1.9) and ¢ coincide.

Proof This is stated and proved in [CT/S1, Section 1] for rational surfaces,
but the proof uses no other properties of rational surfaces than (2.3) and
(2.4).

Now consider a discrete valuation ring A containing k; let K be its field
of fractions and F' its residue field, and suppose that these fields are perfect.
For a closed point P on Xy, write A(P) for the integral closure of A in K (P).
The valuative criterion of properness for X4 — Spec A implies that there is
a unique A-morphism g: Spec A(P) — X4 extending P — Xg. Let

sp: Zo(Xk) — Zo(XF)
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be the specialization homomorphism that sends a closed point P to the cycle
associated to the 0-dimensional closed subscheme Spec A(P) Xgpec 4 ' of Xp.
Then extend sp to arbitrary O-cycles by additivity.

It is easy to see that sp sends 0-cycles of degree zero to O-cycles of degree
zero. Denote by sp® the associated map from Zy(Xx)® to Zo(Xr)?. Then the
obvious diagram
Zo(X) 5 Zo(X)°

| | (2.8)
Zo(X)? 2 Zo(Xp)

commutes and sp and sp” have the expected functoriality properties under
field extensions of k. It can be shown that sp induces a specialization map of
Chow groups of 0-cycles, but we shall not need this.

2.9 Proposition Suppose that there exists a universal torsor T over X,
and let ¢ be the map described in Proposition 1.9. Then the following holds.

(a) The functorial map from H} (Spec A, Ta) to H} (K, Tx) is injective.
(b) ¢1(Zo(Xk)) C Im(H (Spec A, Ta) — Hg (K, Tk)).
(c) The following diagram commutes

Zo(Xk) — Zo(Xr)

|or |or
Im(HY (Spec A, Ty) — HL(K,Tx)) = HL(F,Tr)

for the functorial map © from H} (Spec A,T4) (cf. (a)).

Proof (a) See [CT/S3, Section 4].

(b) The argument is well known (see, for example, [CT/S1, p. 428]). The
Xg-torsor T extends to an X -torsor 74 under T4, and any closed point
P on Xk can be extended to a morphism Spec A(P) — X, (see the con-
struction of sp). Combined with the existence of corestriction maps from
H{ (Spec A(P), Tapy) to H}(Spec A, T4), this implies that ¢(Zy(Xk)) C
H} (Spec A, Tx).

(¢) The horizontal maps factorize over the completion of K. We may thus
assume that A is complete and hence that A(P) is discrete for each closed
point P. By using obvious functoriality properties under corestriction of the
maps involved, one reduces to prove that O(¢7(P)) = ¢7(o(P)) for a rational
point P. To see this, note that both composites give the pullback of 7, at
the closed point on X determined by Spec A(P) — X 4.
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2.10 Lemma Let k be a field of characteristic 0, and X, Y two smooth,
proper, geometrically connected k-varieties. Suppose that (2. 3) and (2.4) hold
for X = X x, k for any algebraically closed field k containing k, and that
there exists a universal torsor over X. Then for any O-cycle y on Y, the
following holds:

(a) The map p(y): HY(Y,T) — H(k,T) factorizes through a map p'(y)
from Tm(HL (Y, T) — HL(k(Y), T %, k(Y)) to H}(k,T).

(b) ¢'(Zo(X x1 k(Y))?) € Im(HE (Y, T) — Hy(k(Y), T x5 k(Y)))

(c) & (Zo(X xx k(Y))?) maps to ¢/ (Zo(X)°) under p'(y).

Proof (a) See [CT/S2, 2.7.5].
(b) By [CT/S1, p. 428], it is known that

I (HA (Y, T) = HL(k(Y), T x5 k(Y)))

_ﬂ1m< (Oyvo, T xy OYQ)_’H (k(Y)>Txkk<Y>>>>

where () runs over all points of codimension one on Y. The desired inclusion
is therefore a consequence of (2.9b) and the fact that ¢ = ¢’ (see Proposi-
tion 2.7).

(c) Let y = > m;y;, where the y; are closed points on Y. Since p is additive
with respect to Zy(Y), it suffices to prove the statement for each p'(y;). By
factorizing p(y;) through Hj (Y X k(y;), T X xk(y;)) and using the functoriality
of ¢ under extensions of the base field, we reduce further to the case when y
is a rational point. We now use induction on dimY and note that the case
dimY = 0 is trivial. If dimY > 1, let f: Y — Y be the blowup at the k-
rational point y, Z = f~!(y) and A the stalk of Oy at the generic point of Z.
Then A is a discrete valuation ring with field of fractions K := k(Y) = k(Y)
and residue field F' := k(Z). Then by (2.9¢) and Proposition 2.7 there is a
commutative diagram

Zo(X )P N Zo(Xp)°
|# | (2.11)
m(H} (Spec A, Tn) — HY(K,Tx)) > H(F,Tr)

Now choose a rational K-point z on the above Z. Then, since dim Z =
dimY — 1, we obtain from the induction assumption that (c) holds if we
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consider the pair (7, z) instead of (Y, y). Further, by using the commutativity
of (2.11), we deduce from this that (c) also holds for the pair (Y, 7), which in
turn implies that (c¢) holds for (Y, y) since K(Y) = K(Y) and f(z) = y. This
finishes the proof. [

We shall in the sequel use the following functoriality properties of (2.1).
Let k C k; be an extension of perfect fields with algebraic closures k C k1. Put
G = Gal(k/k), G1 = Gal(ky/k1), X1 = X %} k; and X; = X X, k1. We may
then consider (2.1) as a sequence of Gj-modules through the homomorphism
G, — G obtained by restricting the Gi-action to k. This sequence is the upper
row in a commutative diagram of discrete G;-modules where the bottom row
is given by (2.1) applied to X;. Now suppose that X and X satisfy (2.3)
and (2.4). Then we obtain the following commutative diagram with exact
rows from the functoriality of (2.5) under extension of the base field:

Zo(X)" — Hgy(k,T) — HY(G,M) — Z/deg Zy(X) — HE(k,T)

l l l l L e

Zy(X1)? — Hi(k1, Tv) — H'(Gy, My) — Z/deg Zo(X1) — HZ (1, Th)

where T} = T Xy, ky and M, is the cokernel of the tame symbol map in (2.1)
for X;. Note that 7} can be identified with the Néron—Severi torus of X
since the functorial map gives an isomorphism from Pic(X) to Pic(X;) by
Proposition 1.46.

From now on, let k be a number field and choose algebraic closures k,
of k,, and embeddings k C k, for each place v of k. Let G, = Gal(k,/k,),
X, = X Xp ky, Xy = X Xg ky, and let M, be the cokernel of the tame symbol
map in (2.1) for X,. Write III!(k, M) for the kernel of the diagonal map
from H*(G, M) to [1; , H(Gv, M,).

2.13 Theorem Let k be a number field and X a smooth proper geometrically
connected k-variety such that (2.3) and (2.4) hold for X := X x; k for any
algebraically closed field k containing k. Suppose that for each v € Q, we are
giwen a 0-cycle z, of degree one on X, and that Manin’s reciprocity condition
St o 10V (po(20))(Ay) = 0 holds for all A € HZ(X,G,,).

Then Y (k, M) maps onto Z/deg(Zy(X)) under the map from HY (G, M)
in (2.5). In particular, if ' (k, M) = 0, then there is a 0-cycle of degree one
on X.

Proof Let E_be_ an algebraic closure of k, and K an algebraic closure of the
function field k(X) of X := X x; k. Then K is also an algebraic closure of
K := k(X) and we have a natural homomorphism from H := Gal(K/K) to
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G := Gal(k/k). Now consider (2.12) for k; = K. Then Z/deg(Zy(X1)) = 0
since the generic point of X defines a K-rational point on X; = X.

By Proposition 1.26, since Manin’s reciprocity condition is satisfied, there
exists a universal torsor over X. In turn, this implies that (cf. (2.2.5) and
(2.2.8) in [CT/S2]) the map from HZ(k,T) to HZ(ki,Ti) is injective. We

thus obtain the following commutative diagram with exact rows from (2.12):

Zo(X) — HL(T) — HYG.M) — L/degZo(X) — 0

l l l l (2.14)

ZQ(XK)O — Hé}t(K,TK) — Hl(H,MK) — 0

where My is the cokernel of the tame symbol map (see (2.1)) for X x; K.
The assertion that IIT!(k, M) maps onto Z/deg(Zy(X)) therefore reduces to
the assertion that H'(G, M) is generated by IIT'(k, M) and the image of
H(k,T).

For each place v of k there is a commutative diagram with exact rows:

Zo(X) — HL(k,T) — HYG,M) — Z/degZy(X) — 0

l l l l (2.15)
Zo(X,)0 — HY(kyT,) — HY(Gy M,) — 0

where the zero in the second row comes from the existence of a 0-cycle of
degree one on X,. Let K, := k,(X,) be the function field of X,, and K,
an algebraic closure of the function field Ev(yv) of X, containing K. Then
K, is also an algebraic closure of K,, and there are natural homomorphisms

from H, = Gal(K,/K,) to G, and H. Let M, be the cokenel of the tame
symbol map (see (2.1)) for X xj K,. Then there are commutative diagrams
with exact rows

Zy(Xk)? — Hg(K.Tx) — H'(H,Mg) — 0
l l ! (2.16)
ZO(XKU)O - Hé}t(K’l” TKU) - Hl (Hv? MKU) - O

and

Zo(X,)" —  Hy(k,T,) — HY G, M,) — 0
l l l (2.17)
Zo(Xk,)* — Hg(K,, Tk,) — H'(Hy, Mg,) — 0
and (2.14-17) are parts of a three-dimensional commutative diagam that also
contains the commutative diagrams
H(k,T)  —  Hg(ky, T, HY(G M) —  HY(G,,M,)

l l and l l

Hélt(K7TK) - Hélt(KU7TKv) Hl(HaMK) - H1<HU7MKU)'
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Now let p be an element of H'(G, M), ug its image in H'(H, Mk), p, its
image in H'(G,, M,) and pg, its image in H'(H,, Mg,). Lift pux to an
element n of H (K, Tk) (cf. (2.14)) and u, to an element 8, € H} (k,,T,)
(cf. (2.15)), and consider the images 1, of n and fk, of 8, in H(K,, Tk,).
Then 7, — Bk, € Ker(Hélt(Kv,TKU) — Hét(Hv,MKU)) which by exactness
of the second row in (2.17) implies that 1, — Bk, € ¢'(Zo(Xk,)?). Thus by
(2.10b), n, — Bk, € Im(H%(X,,T,) — Hi(K,,Tk,)), and hence so does 7,.
Choose for each place v an X,-torsor 7, under T,, such that [7,] € H} (X,,T,)
maps to n, in H (K, Tk,). Then since n, — Bk, € ¢'(Zo(Xk,)?) we conclude
from (a) and (c) of Lemma 2.10 that p,(z,)([T.] — Bk,) € ¢'(Zo(X,)?). This
means that p,(z,)([Z,]) and p,(2,)(Bk,) = [, have the same image p, in
HY(G,, M,).

From the assumption that the O-cycles (2, )yecq, satisfy Manin’s reciprocity
condition for all A € H2(X,G,,), we deduce from Corollary 1.45 that there
exists a € H}(k,T) with image p,(z,)([Z,]) in H} (k,,T,) for each place
v € Q. Therefore, a € H} (k,T) maps to an element in H'(G, M) with the
same image as pu in H'(G,, M,) for each v € Q. This completes the proof.

2.18 Theorem Let k be a number field and X a smooth proper geometrically
connected k-surface. Suppose that there exists a rational function t € k(X)
on X such that k(X)) is the function field of a Severi—-Brauer curve over k(t).
Then

(a) TIT'(k, M) = 0,

(b) Suppose that for each v € Qi we are given a 0-cycle z, of degree one on
X, such that Manin’s reciprocity condition ) , inv,(py(2,))(Ay) =0
holds for all A € HZ(X,G,,). Then there exists a 0-cycle of degree one
on X.

Proof (a) H'(G, M) and II'(k, M) are k-birational invariants [Sa]. The
assumptions on X implies that it is k-birational to a relatively minimal conic
bundle surface over P!. Tt is therefore sufficient to prove that IIT'(k, M) = 0
for relatively minimal conic bundle surface over P'. But this is the main
result of [Sa].

(b) This is a consequence of (a) and the previous theorem.
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Abelian surfaces with odd bilevel structure

G.K. Sankaran

Abelian surfaces with weak bilevel structure were introduced by S. Mukai
in [14]. There is a coarse moduli space, denoted AP!, for abelian surfaces of
type (1,t) with weak bilevel structure. AP is a Siegel modular threefold, and
can be compactified in a standard way by Mumford’s toroidal method [1].
We denote the toroidal compactification (in this situation also known as the
Igusa compactification) by AP, It is a projective variety over C, and it
is shown in [14] that AP is rational for ¢ < 5. In this paper we examine
the Kodaira dimension x(AP!*) for larger . Our main result is the following
(Theorem VIIL.1).

Theorem AP is of general type for t odd and t > 17.

It follows from the theorem of L. Borisov [2] that AP is of general type
for ¢ sufficiently large. If ¢ = p is prime, then it follows from [7] and [12] that
A;;ﬂ* is of general type for p > 37. Our result provides an effective bound in
the general case and a better bound in the case t = p. As far as we know,
all previous explicit general type results (for instance [7, 12, 15, 8, 16]) have
been for the cases t = p or t = p? only.

It is for brevity that we assume ¢t is odd. If ¢ is even the combinatorial
details are more complicated, especially when ¢t = 2 mod 4, but the method
is still applicable. In fact the method is essentially that of [12], with some
modifications.

Acknowledgement Part of this work resulted from conversations with my
research student Alfio Marini.

I Background

If A is an abelian surface with a polarisation H of type (1,%), t > 1, then
a canonical level structure, or simply level structure, is a symplectic iso-
morphism

aZ S KH)={x€eA

L= Life(L)=H}.

279
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The moduli space A" of abelian surfaces with a canonical level structure has
been studied in detail in [11], chiefly in the case t = p.

A colevel structure on A is a level structure on the dual abelian surface A:
note that H induces a polarisation H on fl, also of type (1,t). Alternatively,
a colevel structure may be thought of as a symplectic isomorphism

B: Zf — Alt]/K(H)

where A[t] is the group of all ¢-torsion points of A. Obviously the moduli space
Al of abelian surfaces of type (1,t) with a colevel structure is isomorphic
to AY, and each of them has a forgetful morphism ', ¥ to the moduli
space A; of abelian surfaces of type (1,¢). We define

bil __ lev col

The forgetful map '*v: AlY — A, is the quotient map under the action of
SL(2,Z;) given by

v: (A H )] = [(A H, o)

where v € SL(2,Z;) is viewed as a symplectic automorphism of Z?. The
action is not effective, because (A, H, «) is isomorphic to (A, H, —«) via the
isomorphism x — —x; so —1, € SL(2,7Z;) acts trivially. Thus 1'*¥ is a Galois
morphism with Galois group PSL(2,7Z;) = SL(2,Z,)/ £ 1,.

A point of AP thus corresponds to an equivalence class [(4, H, «, 3)],
where (A, H) is a polarised abelian surface of type (1,t), a and [ are level
and colevel structures, and (A, H, a, 3) is equivalent to (A’, H', o/, 3') if there
is an isomorphism p: A — A’ such that p*H' = H, pa = o and p~ ! =
f'. In particular, for general A, we have (A, H,«, ) = (A, H, —a, —f3) but
(A H,«o, ) 2 (A, H,—«, ). Another way to express this is to say that the
wreath product Zs ! PSL(2,7Z;), acts on AP with quotient A;.

Theorem 1.1 (Mukai [14]) AP is the quotient of the Siegel upper half-plane
Hy by the group

Iyt =Tiucry

where
t7Z *x tZ tZ
. B 7 t7 t7Z t*7Z
Ni=q7€Sp42) v =l |, . 1 17

x %  x tZ

and ¢ = diag(1, —1,1, —1), acting by fractional linear transformations.
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Thus I'P! should be thought of as a subgroup of the paramodular group

t7, *x tZ tZ
I, = ’yESp(4,@) 7_146 * * x 17
* %Z * Kk

(The paramodular group is the group denoted I'f ; in [11] and [5].)

_ For some purposes it is more convenient to work with the conjugate
P = RIPMIR, - of TP by R, = diag(1,1,1,t), and with the correspond-
ing conjugates lN“E, ﬂe" etcetera. These groups have the advantage that they
are subgroups of Sp(4,Z) rather than Sp(4,Q), and defined by congruences
mod ¢, not mod t2, but their action on H is not the usual one by fractional
linear transformations.

If E; are elliptic curves and (A, H) = (E; X Es, ¢1(Op, (1)XOg,(t))), we
say that (A, H) is a product surface. In this case K(H) = {0g, } x Es[t], so
a level structure on A may be thought of as a full level ¢ structure on Fs.
The automorphism (x,y) — (x, —y) of A = E; X E, induces an isomorphism
(A,H,«a,5) — (A, H,—a, ) in this case, so a product surface with a weak
bilevel structure still has an extra automorphism. The corresponding locus
in the moduli space arises from the fixed locus of ¢ in Hj, and will be of great
importance in this paper.

The geometry of APY* shows many similarities with that of Al*v*, which
was studied (in the case of ¢ an odd prime) in the book [11]. In many cases
where the proofs of intermediate results are very similar to those of corre-
sponding results in [11] we omit the details and simply indicate the appropri-
ate reference.

II Modular groups and modular forms

We first collect some facts about congruence subgroups in SL(2,7Z) and some
related combinatorial information. For r € N we denote by I';(r) the principal
congruence subgroup of SL(2,7Z). We denote the modular curve I'; (r)\H by
X°(r), and the compactification obtained by adding the cusps by X(r).

For m,r € N, define

®,,(r) = {a € Z" | ais not a multiple of a zerodivisor in Z, } ,

that is, a € ®,,(r) if and only if a = 2a’ implies z € Z;; and put ¢,,(r) =
#®,,(r). We also put @,,(r) = @,,(r)/£1.
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Lemma 11.1 If the primes dividing r are p1 < py < --- < p, then

om(r) =31 3 (rﬁpj;)’" = [l =),

=0 Dy s--Pj; plr

Proof We first prove that ¢,,(r) is a multiplicative function. Suppose first
that r = pq, with ged(p, ¢) = 1. It is easy to see that a € ®,,(r) if and only
if a, € ¢,,(p) and a, € ¥,,(q), where a, denotes the reduction of a mod p.

We divide Z]" into residue classes mod p: that is, we write Z;" as the
disjoint union of subsets S, for ¢ € Z', where S; = {a | a, = c}. There are
®m(p) subsets S. such that r € @,,(p).

The reduction mod ¢ map S. — Zj" is bijective, since it is the inverse of
the injective map b +— ¢ 4+ pb € Z™. Hence in each of the ¢,,(p) subsets
Se, ¢ € ®,,(p) there are ¢,,(q) elements whose reduction mod ¢ belongs to
D, (q). Tt follows that ¢,,(r) = dm(p)dm(q).

Finally, we check that if r = p*, p prime, then ¢,,(r) = r™(1 —p™™). If
a ¢ ®,(r), then a = pa’ for a unique a’ € Z) , so there are (p*~H™ such
elements a. [J

Note that ¢; is the Euler ¢ function, and ®;(r) the set of non-zerodivisors
of Z,.

Corollary I1.2 The order of SL(2,7Z;) is given by
|SL(2,Zy)| = téo(t) = 2 [[(1 = p 7).
plt
Proof (See also [18, §1.6].) If A € SL(2,7Z;), then A; = (a11,a12) € Po(t).

So by Euclid’s algorithm we can find A} = (a),, aby) such that det <f‘é> =

ged(ayr, a12) = r. Replacing A, by Ay = r~ 1A, we get a matrix A with
det A = 1. Furthermore, if B; = (AQ’JL:}AI ), j=20,...,t =1, then det B; =
det A=1, and B; # Bj if j # j'. So |SL(2,Z:)| = t¢o(t). O

For r > 2, put u(r) = [PSL(2,Z): I'y(r)]. By Corollary 11.2 we have
u(ry=r* I -p7).
plr
We need the following well-known lemma.
Lemma I1.3 Ifr > 2 then X(r) has
v(r) = p(r)/r=r*]J(1 =p7?)

plr

~ _ (r) _ v()
cusps and is a smooth complete curve of genus g = 1+ 55 — =2,
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Proof See [18, pp. 23-24]. O

We denote p(t) by p and v(t) by v. Note that ¢o(1) = v(1) = 1 and
¢a(r) = 2v(r) for r > 2.

Now we turn to subgroups of Sp(4,Q) and modular forms. Denote by
S () the space of weight n cusp forms for I' C Sp(4,Q). We need the
groups I'(1) = PSp(4,Z) and, for £ € N,

I(0) = {7 €Sp(4,2) | 7 = 1, € Sp(4. Z()}.

If 2 | £ then T'(¢) <1 TP because I'(¢) C TP and I'(¢) is normal in T'(1) =
Sp(4,7Z).
By a previous calculation [19] we know that

n3

~ 8640

dim &}, (T'(¢)) [C(1) : T(0)] + O(n?)

(as long as £ > 2 we can consider I'(¢) as a subgroup of PSp(4, Z) rather than
Sp(4,7Z)). A standard application of the Atiyah-Bott fixed-point theorem
(see [9], or in this context [12]) gives

a

dim &}, (T'(¢)) + O(n?)

where a is the number of elements v € T'}P! whose fixed locus in Hy has
dimension 3. Thus a is the number of elements of T'}! that act trivially on Hy.
In Sp(4,7Z) there are two such elements, 414, but if ¢ > 2 then —1, ¢ "ML
So a = 1, and hence

. * bil _ 1 : * 2
dim & (TY") = Wdlmen(w)) + O(n?)

n® [[(1):T(0)]

8640 [T'P!: I'(()]

nS

= 00 [T(1) : T}"] + O(n?). (1)

+ O(n?)

The number [['(1) : TP] is equal to the degree of the map AP! — A; (actually
there are two such maps of the same degree), where A; is the moduli space
of principally polarized abelian surfaces. Now

[T(1): b = % [f(l) : FE]

- % (1) 1] [re o).
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We can see directly that T} D FE since

x  x  x 17
tZ t7 t7 t*7Z
I S 7///
*  x  *x tZ

I =<y €Sp(4,Z) |7 -1, €

Lemma I1.4 The map

@: T — SL(2,Z,) given by A (an a13)

a31 ass

18 a surjective group homomorphism, and the kernel is Fg.

Proof The surjectivity follows from the well-known fact that the reduction
mod t map reds: SL(2,Z) — SL(2,Z,) is surjective; the rest is obvious. [

Lemma I1.5 Fort > 2, the index [[(1) : T'] is equal to tp4(t)/2.

Proof The proof is almost the same as that of [13, Lemma 0.5]. In place
of the chain of groups I'1, < o['1, < I' = T'(1), we use the chain 'Y <
ol'1r < I'(1). Furthermore, we use the set ®,(t) where SL(4,Z,;) acts. Note
that SL(4, Z) still acts transitively on ®4(), via

bii 0 b2 O

0O 1 0 O q B 0

bay 0 byy O an (O tB_l) ’
0 0 0 1

for B € SL(2,7Z).

Following the same steps as in [13], and substituting ¢, (t) for p™ — 1 =
$m(p), we then find that [oI'; : Ti] =ty (¢) and [pT'1, : T(1)] = ¢a(t)/r(2),
so [[(1): Tlev] = tpa(t)/2. O

Theorem I1.6 The number of cusp forms of weight n for TP (for t > 2) is
given by

3

: * i n
3

n

— 8 1_ —2 4 )
1560° lp_t[( p)(1—-p")
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Proof Immediate from equation (1), Corollary I1.2 and Lemma I1.5. O

IIT Torsion in the modular group

We know that I'M! C Sp(4,7Z), and the conjugacy classes of torsion elements
in Sp(4,Z) are known ([6, 20]). See [10] for a summary of the relevant infor-
mation.

If~ve FE then the reduction mod ¢ of 7 is

1 « 00

_ 01 00

T= 1o « 1 0 €5PHE)
x % % 1

so the characteristic polynomial x(7) is (1 — z)* € Z[z]. On the other hand,
if vy € CF? then

1 * 00 1 = 0 0

_ 60100 10 -10 0

=0« 10|70 & 1 0| SPEZ)
* ok % 1 * * —1

50 x(7) = (1 = 2)2(1 + )2 € Zufa].

The only classes in the list in [20], up to conjugacy, where the characteristic
polynomials have this reduction mod ¢ (¢ > 2) are I(1), where x(v) = (1—=z)*,
II(1)a and II(1)b. Class I(1) consists of the identity; class II(1)a includes ¢
so this just gives us the conjugacy class of (. Class II(2)b is the Sp(4,Z)-
conjugacy class of &, where

1 1 0 0

o =10 o0 o

§=1g o0 1 o |5
0 0 1 —1

Proposition III.1 Every nontrivial element of finite order in TP (fort > 2)
has order 2, and is conjugate to ¢ or to & in TPV if t is odd.

Proof It follows from the list in [20] that the only torsion for ¢t > 2 is 2-
torsion (this is still true if ¢ is even). The 2-torsion of the group I'l®" was
studied by Brasch [3]. There are five types but only two of them occur for
odd t. The representatives for these conjugacy classes given in [3] are (up
to sign) ¢ and &; so the assertion of the theorem is that the T'P!-conjugacy
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classes of ¢ and £ coincide with the intersections of their I'®V-conjugacy classes
with TP This is checked in [17, Proposition 3.2] for the case t = 6 (the
relevant cases are called (o and (3 there), but the proof works for allt > 2. O

We put

H, = {(Tl 0> ’ Im7 >0, Im7mg > O} C H, (2)

07’3

and

HQ == {(Tl 7—2) ' 2T2+T3 = 0} - Hg. (3)
T2 T3

These are the fixed loci of ¢ and £ respectively. We denote by Hy and Hj
the images of H; and Hs in A?ﬂ, and by H; and H, their respective closures
in AP,

Lemma II1.2 H; is irreducible for i =1,2.

Proof This follows at once from Proposition III.1 together with equations
(2) and (3). O

The abelian surfaces corresponding to points in H; and HS are, respec-
tively, product surfaces and bielliptic abelian surfaces, as described in [13] for
the case ¢ prime.

We define the subgroup I'(2¢,2t) of I'(¢) x I'(¢) by

['(2t,2t) = {(M,N) eT(t) xT(t) | M ="'N"" mod 2}

Lemma II1.3 HY is isomorphic to X°(t) x X°(t), and HS is isomorphic to
T'(2t,2t)\H x H.

Proof Identical to the proofs of the corresponding results [11, Lemma 1.5.43]
and [11, Lemma 1.5.45]. The level ¢ structure now occurs in both factors,
whereas in [11] there is level 1 structure in the first factor and level p structure
in the second. In [11] the level p is assumed to be an odd prime but this fact
is not used at that stage: p odd suffices, so we may replace p by t. Thereafter
one simply replaces all the groups with their intersection with T'P", which
imposes a level ¢ structure in the first factor and causes it to behave exactly

like the second factor. O

Lemma II1.4 H} and H3 are disjoint.
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Proof The stabiliser of any point of Hy in T'P! is cyclic (of order 2), since
FE is torsion-free and therefore has no fixed points. A point of H; NHy would
be the image of a point of Hy stabilised by the subgroup generated by ( and
¢, which is not cyclic. [

IV Boundary divisors

We begin by counting the boundary divisors. These correspond to f'to“—orbits
of lines in Q*: we identify a line by its primitive generator v = (v, vy, v3,v4) €
Z* with hef(vy,ve,v3,v4) = 1, which is unique up to sign. We denote the
reduction of v mod ¢ by Vv = (v1,09,03,74) € Z;. To fix things we shall
say, arbitrarily, that v is positive if the first nonzero entry v; of Vv satisfies
7, € {1,...,(t—1)/2} (remember that we have assumed that ¢ is odd). Then
each line has a unique positive primitive generator.
If v = (v1,v9,v3,04) € Z*, we define the t-divisor to be r = hef(t, vy, v3).

Proposition IV.1 Positive primitive vectors v,w € Z* span lines Qv and
Qw in the same TP-orbit if and only if (v1,93) = (W, Ws) (in particular v
and w have the same t-divisor, r), and (vy,vy) = +(wq, wy) mod 1.

Proof Note that if I(t) is the principal congruence subgroup of level ¢ in
Sp(4,7Z) then T'(t) < I'¥ and the quotient is

We claim that two primitive vectors v and w are equivalent modulo I'(¢) if
and only if 7 = w. It is obvious that I'(¢) preserves the residue classes mod t.
Conversely, suppose that © = w. Then we can find v € Sp(4,Z) such that
vv = (1,0,0,0) (the corresponding geometric fact is that the moduli space
A, of principally polarised abelian surfaces has only one rank 1 cusp). Since
I'(t) < Sp(4,Z) this means that in order to prove the claim we may assume
v = (1,0,0,0). Then we proceed exactly as in the proof of [5, Lemma 3.3],
taking p = 1 and ¢ = t (the assumptions that p and ¢ are prime are not used
at that point).

The group I (t) acts on the set (Z2)* of nonzero elements of Z? by Ty —
Uy + kU1 + (U3 and Ty +— Ty + kU1 + ['U3: so V is equivalent to w if and only
if (v1,73) = (wy,ws), so they have the same t-divisor, and Uy € Wy + Z;r and
Uy € Wy + Zyr. These are therefore the conditions for primitive vectors v and
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w to be equivalent under fE For equivalence under f?ﬂ, we get the extra
element ¢ which makes (v, ve,v3,v4) equivalent to (vy, —vg,v3, —v4). Since
we are interested in orbits of lines, not primitive generators, we may restrict

ourselves to positive generators v. [

The irreducible components of the boundary divisor of AP!* correspond
to the TPl-orbits (or equivalently to ﬂ’ﬂ—orbits) of lines in Q*. We denote
the boundary component corresponding to Qv by D,. We shall be chiefly
interested in the cases r =t and r = 1. We refer to these as the standard
components. They are represented by vectors (0, a, 0, b) and (a, 0, b, 0) respec-
tively, in either case with hef(a,b0) = 1,0 <a < (t—1)/2 and 0 < b < t.
Note that there are v of each of these.

Corollary IV.2 Ift is odd then the number of irreducible boundary divisors
of AP with t-divisor r is #Py(h)#®Po(r), where h = t/r. Forr # 1, t, this
is equal to 12 (h)da(r).

Proof See above for the standard cases. In general, the FE—orbit of a prim-
itive vector v is determined by the classes of (vy/r,v3/r) in ®9(h) and of
(U, 04) € Po(r). The extra element ¢ and the freedom to multiply v by
—1 € Q allow us to multiply either of these classes by —1 and the choices
therefore lie in ®5(h) and ®y(r). O

V Jacobi forms

This section describes the behaviour of a modular form F € &%, (T}1) near
a boundary divisor Dy. The standard boundary divisors are best treated
separately, since it is in those cases only that the torsion plays a role: on the
other hand, the standard boundary divisors occur for all ¢ and their behaviour
does not depend very much on the factorisation of t.

We assume at first, then, that D, is a nonstandard boundary divisor.
Since all the divisors of given t-divisor are equivalent under the action of
Z)SL(2,Zy) (because the t-divisor is the only invariant of a boundary divisor
of A;: see [5]), it will be enough to calculate the number of conditions imposed
by one divisor of each type. That is to say, we only need consider boundary
components in A;.

In view of this we may take v = (0,0, r,1) for some r | t with 1 < r < ¢.
We write (0,0,0,1) = v(o) (for consistency with [11]) and we put h = t/r.
Since we want to work with TP rather than f?ﬂ (so as to use fractional
linear transformations) we must consider the lines QvR; = Qv’, where v/ =
(0,0,1,h) and Qv 1R = Qv(o).
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Note that v'Q), = v(g1), where

1 10 0
h—1 h 0 0
0 0 -1 1

Proposition V.1 If v has t-divisor r # t, 1 and F € &3(T?) is a cusp
form of weight k, then there are coordinates T such that F has a Fourier
expansion near Dy as

2miwTy

F =Y 05(r,7)exp .

rt
w>0

Proof As usual (cf. [11]) we write P, for the stabiliser of v/ in Sp(4,R),
so P, = Q;lpx.,(O’l)Qr. We take P, = P, N TPl this group determines the
structure of AP near D,. It is shown in [11, Proposition 1.3.87] that Py
is generated by g1(7) for v € SL(2,R), g2 = (, gs(m,n) and g4(s) for m, n,

s € R, where
a 0 b 0
() = 0100 ‘ _fa b
V=010 do] ™ T \ed
0 001
and g3 and g4 are given by
1 00 n 1 000
( ) = m 1 n 0 (s) = 01 0 s
GBI =10 10 —m|* 99710010
0 00 1 0 001

So P! includes the subgroup generated by all elements of the form Q'¢;Q,
with a, b, ¢, d, m,n,s € Z which lie in '™l In particular it includes the lattice
{Q1g4(rts)Q, | s € Z}. Tf we take Z¥V = Q;1(Z) for Z = (71 7) then we
obtain

Zv . h27'1 — 2h7’2 + T3 —h(h — 1)7’1 + (2h — 1)7'2 — T3
N —h(h — 1)’7’1 + (2h — ].)TQ — T3 (h — ].)27'1 — Q(h — ].)7'2 + 73 ’

One easily checks that

Q: gu(rt)Q,: 2 = <ﬁ” Tzv) . (n“ ry )

TS Ty Ty T +rt
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and this proves the result. [J
We define a subgroup I'(¢,r) of SL(2,Z) by

- {(:)

Lemma V.2 [f D, is nonstandard then P. is torsion-free.

a=d=1modt, b=0mod t*, CEOmodr}.

Proof The only torsion in T'P! is 2-torsion and a simple calculation shows
that if 1, # g € Py, ,, and ¢g> = 14, then Q,; 'gQ, ¢ TP forr #1,t. O

(0,1)

Proposition V.3 If D, is nonstandard and F € &} (TPY) then 0¥ (r7y, ty)
is a Jacobi form of weight k and index w for I'(t,r).

Proof By direct calculation we find that Q- 1g:(7)Q, € TPl if v € T'(¢,7r)
and Qtgs(rm,tn)Q, € TP for m, n € Z. Using these two elements, another
elementary calculation verifies that the transformation laws for Jacobi forms
given in [4] are satisfied, since

T Ty +rm1y +1tn
y +rm7y +tn 1) + 2rm7y + rPmiry

Q, gs(rm, tn)Q,: Z¥ (

) . () 7 /(e + d)
and  Q,'g1(7)Qr: Z¥ (TQ"/(CTl‘l’er) Ty _207'2"/1(07'1v+d)). -

Lemma V.4 The index of T'(t,7) in ['(1) is equal to rtpy(t) for r # 1, t.

Proof Consider the chain of groups
['(1) = SL(2,Z) > To(t) > To(t)(r) > (¢, r)

and the normal subgroup T';(¢) <1 To(¢), where

Lo(t) = {VZ(z Z

a b a=d=1modt,
N(t) = { :(c d>€SL(2’Z) b=c=0mod ¢ }’
) a=d=1modt, }

a=d=1modt,
b=0mod ¢ ’

b=0mod ¢, c=0mod h
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Thus FO( )(r) is the kernel of reduction mod r in I'¢(¢). By Corollary I1.2,
[[(1) : T'y(t)] = tpa(t). By the exact sequence

0— Ty(t) — Tolt) — {(é (1))

Cc € Zt} = Zt — 0
we have [[g(t) : T'1(t)] = ¢, and similarly

0 — To(t)(r) — To(t) — {(}; (1))

CEZT}%’ZT—>O

gives [[o(t) - To(t)(r)] =

To calculate [T'(¢)(r) : ( r)], we let T'o(t)(r) act on Z; X Zy2 by right multi-
plication v: (z,y) — (azx + cy, bx + dy). The stabiliser of (1,0) € Z; X Zy is
then {7 € Ty(¢)(r) |a =1 mod ¢t,b =0 mod ¢?}, which is F(t 7") However,
the orbit of (1,0) € Z; x Zy is {(a,b) € Zy x Zy2 | (24) € To(t)(r)}: that is,
the set of possible first rows of a matrix in I'g(¢)(r) taken mod ¢ in the first
column and mod #? in the second. This is evidently equal to {(1,tV) | b € Z;},
and hence of size t. Thus [['(¢)(r) : I'(¢,r)] = t, which completes the proof. [

The standard case is only slightly different, but now there is torsion.

Proposition V.5 If D, is standard and F € &;(TPY) then Y (ry,t1y) is
a Jacobi form of weight k and index w for a group I'(t,r), which contains
['(t,r) as a subgroup of index 2.

Proof Although the standard boundary components are most obviously
given by (0,0,0,1) for » = ¢t and (0,0,1,0) for r = 1, we choose to take
advantage of the calculations that we have already performed by working
instead with (0,0,¢,1) and (0,0,1,1). Lemma V.3 is still true, but we also
have Q;'¢Q; € TP and Q' (—¢)Q: € TP These give rise to the stated
extra invariance. [

Lemma V.6 The dimension of the space Js (F’(t,r)) of Jacobi forms of
weight 3k and index w for I'(t,r) is given as a polynomial in k and w by

2

k
dim J3p. (I'(¢, 7)) = ortv (7“} + %) + linear terms

where § = % ifr=1o0orr=tandd =1 otherwise.
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Proof By [4, Theorem 3.4] we have
2w
dim Jap (T'(t,7)) < dim Ggps (T'(¢, 7). (4)
=0

Since I"(¢,7) is torsion-free, the corresponding modular curve has genus 1 +

@ — @, where p(t,r) is the index of I'(¢,r) in PSL(2,Z) and v(t,r) is

the number of cusps (see [18, Proposition 1.40]). Hence by [18, Theorem 2.23]
the space of modular forms satisfies

dlmGk(F'(t,r)) — k <:u(f,27") . V(gr)) +§I/<t,7")+0(1)

ku(t,r)
= 2 7240(1 5}
14 oq) )
as a polynomial in k. By Lemma V.4 we have pu(t,r) = 3rt¢s(t) = rtv for the
nonstandard cases, u(t,1) = 3tv and u(t,t) = 5t*v. Now the result follows

from equations (5) and (4). O

If e &5 (TP then F - (dmy A dry A dr3)®* extends over the component
Dy if and only if Y, = 0 for all w < k: see [1, Chapter IV, Theorem 1]|. Hence
the obstruction {2, coming from the boundary component D, is

k—1

Qy =Y dim Jyy, (I'(t, 7)) (6)

w=0

where I"(t,7) = T'(t,r) if Dy is nonstandard.
By Corollary IV.2 the total obstruction from the boundary is

Do = 3 HBOET() S dim (1, 1)),
rlt w=0

and we may assume that k is even.

Corollary V.7 The obstruction coming from the boundary is

Qo < ( > 5rty#6(h)#6(r)) ;—(lik?’ + O(k?).
rlt

Proof Summing the expression in Lemma V.6 for 0 < w < k, as required
by equation (6) gives the coefficient of % and the rest comes directly from
Lemma V.6 and Corollary IV.2. O
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VI Intersection numbers

We need to know the degrees of the normal bundles of the curves that generate
Pic H, and Pic Hy. For this we first need to describe the surfaces H; and H,.
The statements and the proofs are very similar to the corresponding results
for the case of AXY, given in [11] and [12]. Therefore we simply refer to those
sources for proofs, pointing out such differences as there are.

Proposition VI.1 H; is isomorphic to X(t) x X (t).

Proof Identical to [11, [.5.53]. O

Proposition V1.2 H, is the minimal resolution of a surface Hy which is
given by two SL(2, Zsy)-covering maps

X(2t) x X (2t) — Hy — X (1) x X(t).
The singularities that are resolved are v? ordinary double points, one over
each point (o, B) € X (t) x X (t) for which o and [ are cusps.

Proof Similar to [11, Proposition 1.5.55] and the discussion before [12,
Proposition 4.21]. X (2) and X(2p) are both replaced by X (2¢) and X (1)
and X (p) by X (). Since t > 3 there are no elliptic fixed points and hence no
other singularities in this case. [

Proposition V1.3 H and H3 meet the standard boundary components Dy,
transversally in irreducible curves Cy = X°(t) and C!, = X°(2t) respectively.
Dy, is isomorphic to the (open) Kummer modular surface K°(t), Cy is the zero
section and C, is the 3-section given by the 2-torsion points of the universal
elliptic curve over X (t).

Proof This is essentially the same as [11, Proposition 1.5.49], slightly sim-
pler in fact. We may work with v = (0,0, 1,0) and copy the proof for the
central boundary component in Ajlfv, replacing p by t (again the fact that p
is prime is not used). O

We do not claim that the closure of D, is the Kummer modular surface
K(t). They are, however, isomorphic near H; and Hy. We remark that H; and
H; do not meet the nonstandard boundary divisors, because of Lemma V.2.

Proposition VI.4 AP is smooth near Hy and Hs.
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Proof Certainly AP! is smooth since the only torsion in TP is 2-torsion
fixing a divisor in Hy. There can in principle be singularities at infinity, but
such singularities must lie on corank 2 boundary components not meeting H,
nor Hj (this follows again from Lemma V.2). O

Corollary VI.5 H; does not meet H,.

Proof Since .A?ﬂ* and the divisors H; and Hs are smooth at the relevant
points, the intersection must either be empty or contain a curve. However,
the intersection also lies in the corank 2 boundary components. These com-
ponents consist entirely of rational curves, and if ¢ > 5 then H; = X (¢) x X (¢)
contains no rational curves. Hence H; N Hy = (.

With a little more work one can check that this is still true for ¢ <5, but
we are in any case not concerned with that. [

Proposition V1.6 The Picard group Pic Hy is generated by the classes of
¥ = Cooro and ¥y = Cooor- The intersection numbers are X3 = W2 = 0,
21"1]1:1 andEl'le\Pl'le—/L/6.

Proof Asin [12, Proposition 4.18] (but one has to use the alternative indi-
cated in the remark that follows). [

Proposition VI.7 The Picard group Pic Hy is generated by the classes of ¥
and Vo, which are the inverse images of general fibres of the two projections
in X (t) x X (t), and of the exceptional curves Ras of the resolution Hy — Hoy.
The intersection numbers in Hy are X3 = U2 = 3, - Rog = ¥y - Rog = 0,
RQB'RO/Q/ = —2(5%/6[35/ and Eg -\112 =6. In .A?ﬂ* we have EQ'HQ = \IJQ-HQ =
—p and Ryp - Hy = —4.

Proof The same as the proofs of [12, Proposition 4.21] and [12, Lemma
4.24]. The curves R|,, from [12] arise from elliptic fixed points so they are
absent here. [

Notice that 35 and W, are also images of the general fibres in X (2t) x X (2t)
and are themselves isomorphic to X (2t).

VII Branch locus

The closure of the branch locus of the map Hy — AE’“ is H; U Hy and modular
forms of weight 3k (for k even) give rise to k-fold differential forms with poles
of order k/2 along H; and Hy. We have to calculate the number of conditions
imposed by these poles.
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Proposition VII.1 The obstruction from Hy to extending modular forms of
weight 3k to k-fold holomorphic differential forms is

0 < VQG — ;—i+t2<214 +ﬁ>)k3+0(k2).

Proof If F' is a modular form of weight 3k for k even, vanishing to suffi-
ciently high order at infinity, and w = d7; A dmy A d73, then Fw®* determines
a section of kK + %Hl + gHQ, where K denotes the canonical sheaf of A?ﬂ*.
From

0— O(-H;)) — O — Oy, —0

we get, for 0 < j < k/2

0 — H(kK + (g —j—1H + gﬂg) — H°(kK + <§ —J)H + gHg)
k k
Thus
. koo k . koo k
WK + (5 = )i+ g Hy) < (KK + (5 —j = DHy + 5 Ho)
k k
+ W (KK + (5 = ) Hr + 5 Ha) )
Note that, by Lemma V1.5, Hs|gy, = 0. Therefore
k ko k gy k
WO(KK + 5 Ha) = WO (KK + SHy + 5 Hy) + ; WO((KE + (5 = )H) ).
SO
k/2—1 2 k/2—1 k:
0, < Z ho((k?K+(§—j H1 |H1 Z ho k?KHl +])H1|H1)
j=0

(7)

By Lemma VI.6, Ky, and H;|y, are both multiples of ¥; + ®;, and any
positive multiple of ¥; + Wy is ample. Suppose Hi|g, = a1(Z; + ¥;) and
KHl = 61(21 + \Ill) Then

—%221'H1=a21'(21+\1’1)=a1

and

E_VZQQ(El)_QZ(KH1+El)'El:KHl'Elzbl
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Hence, using equation (7)

k/2—1

kﬂ kp  gp
< 0
O < Zh s kvt 6)(21+\11))
k/2 1
kt jtv
j=0

Since t > 7 (we know from [14] that AP!™ is rational for ¢ < 5), we have
My _ky+2 — % 41 > 0 for all j and hence (H2 — kv + 12)(S; + Uy) — Kp,
1s ample. So by Vamshmg we have

k/2—1
1 ktv Jtv 9 9
=0
k/2-1
ktv Jtv 9
= — — kv 4+ — O(k
JZ:;( k) O

::”%%_;i+ﬂQ§+8m>%ﬁ+O@% =

Next we carry out the same calculation for Hs.

Proposition VII.2 The obstruction from H is

s ()= (=T e o

Proof By the same argument as above (equation (7)) the obstruction is

k/2—1
0 < > WO (kKp, —

Jj=0

(5 +9)Hol).

In this case Hs|g, = aa(Xs + Vy) + R, where R = Za,ﬁ R, is the sum of
all the exceptional curves of Hy — Hy, and Ky, = by(32 + ¥y) + do R. Since
Yo = X (2t) we have by [18, 1.6.4]

29(5s) —2 = %(t ~B)w(2r) = 7.

Hence

— U = 22 ‘HQ I(J,QES—FGQEQ ‘\IJQ—FCQEQ ~R:6a2;
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so ag = —/6, and
—41? =R-Hy = a3Y - R+ ay¥s - R+ coR* = —21%¢y;
S0 ¢o = 2. Therefore
M
Hy|p, = _6(22 +WUy) + 2R.
Similarly
v
,u—§: (KH2+22)'22:6b2

s0 by = p1/6 — /12, and 0 = R. Ky, = dyR? so dy = 0. Hence

Ky, = l(u - g)@z + V).

Moreover L; = (k — 1)Ky, — (% + j)Ha|u, is ample, as is easily checked
using the Nakai criterion and the fact that the cone of effective curves on
Hj is spanned by R,3 and by the nonexceptional components of the fibres of
the two maps Hy — X (t). These components are ¥, = ¥y — Zg R,s and
Us =Wy, — > Rag, and it is simple to check that LJQ-, L;-Yy=Lj;-V¥sand
L; - R,p are all positive for the relevant values of j, k and ¢. Therefore

k/2—11 i
0, < — (kK — (= + ) Hol)?
2 — ;2( Hy (2+]) 2’H2)
k/2—1
1, kt k gt
= (= — =+ LN+ U 2
;2(’/(4 12+6)( o+ Ws) + (k+ J)R)
3 1 1 1 1
_ 21.3 (42 N - . - _ - 2
= Vk(t(8+8+72) t(4+24) 51 2 3)+O(k),

since (Xp + Uy)2=12. O

VIII Final calculation

In this section we assemble the results of the previous sections into a proof of
the main theorem.

Theorem VIIL.1 AP is of general type fort odd and t > 17.
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Proof We put n = 3k in Theorem I1.6, and use ¢5(t) = 2v and the fact
that

oa(t) =t [J(1 =p7) = Pou(t) [ [(1 +p72).

plt plt

This gives the expression
: k3u?
dim &;(I7") = —~t* [[(1 +p7%) + O(?).

From Proposition VII.1 and Proposition VII.2 we have

37 71
_ 3.2 _2__ 2
= kv (864t 24 +2>+O(k )
37 7 55
132 by 9Y 2
B = kv (72 24t 24>+O(k)

and from Corollary V.7 and Corollary 1V.2

_k“ZHt?H 1—p72) + O(K?).

rlt p|(r,h)

since ¢a(r)¢2(h) = t* [, 0y (1 =P 72).
It follows that AP is of general type, for odd ¢, provided

481 7 43
1+p )t — —2+ —t E t2 (1-p 8
It(ﬂ) et Tt - Hh) - (8
p p T

1
320

This is simple to check: since either » = 1 or r > 3, and since the sum of the
divisors of ¢ is less than ¢/2, the last term can be replaced by —g:t? — 15t
and the t and constant terms, and the p~2t* term, can be discarded as they
are positive. The resulting expression is a quadratic in ¢ whose larger root
is less than 40, so we need only consider odd t < 39. We deal with primes,
products of two primes and prime powers separately. In the case of primes,
the expression on the left-hand side of the inequality (8) becomes z35t* —

géith + 15825 + 4 7 4, which is positive for ¢ > 17. The expression in the case of
t = pq is positive if £ > 21. For t = p? we get an expression which is negative

for t = 9 but positive for ¢t = 25, and for t = p? the expression is positive. [

One can also say something for ¢ even, though not if ¢ is a power of 2.

Corollary VIIL.2 AP is of general type unless t = 2% with b odd and
b < 17.
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Proof AP covers AP! for any n, and therefore AP is of general type if
AP i of general type. [
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